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A STUDY OF POLAR MOTION

Antonios Terpos
University of Thessaloniki Polytechnic Sechool
Division of Rural and Surveying Englneering

1. Introduction (Historical) A

The study of polar motion begins actually 1n the year 1765,
when Euler published a classic paper in which he examines what
the laws describing Earth's rotational motion would be 1f the
Earth were a rigid body having the shape of an ellipsoid.

Euler demonstrated that, under these conditions, there are two
possibilities:

. 1. If the inertial axis of the Earth coincides initially
wlth the principal inertial axis, i.e., the rotational axis of
the corresponding ellipsoid, then the Earth will keep rotating
around 1ts principal rotational axis. Therefore, in this case,
the rotational axis of the Earth remains at a fixed position,
with respect to its mass, and the points of intersection of
thls axis with the surface of the Earth, i.e., the geographical
poles of the Earth, will be fixed points on the surface of
the Earth.

2. If the rotational axis of the Earth does not initially
coincide with its principal inertial axis, then the rotational
axis will move continuously around the principal inertial axis
of the Earth, deseribing a cone by revolution, a cone which
has as a vertex the center of mass of the Earth. The position
of the rotational axis of the Earth, at an arbitrary moment, is
called instantaneous rotational axis in this case, and the
points of intersection of this axls with the surface of our
planet are called instantaneous geographical poles, or simply
instantaneous poles of the Earth at the moment under.-considera—
tion. o

Therefore, each one of the instantaneous poles of the Earth
describes, in this case, the circumference of a small circie |
on the surface of the Earth, the center of whose circumference
coincides with the point at which the principal rotational axis
of the Earth intersects the corresponding hemisphere of the
Farth.

This phenomenon is known as "polar motion." Euler found /T
that the period of the polar motion is equal %o 304 mean solar T
days. Euler showed that the radius of the circular trajectile
of the pole can not be computed thecretically, but it has to
be determined using observations. Following Euler's introduction,

¥Numbers in the margin indicate pagination in the foreign text.
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A/(C4A) sidereal days, Peter in 1841, Bessel in 1842, and
Maxwell in 1851 investigated the latitude changes with a: i
period of 10 months. The results of these investigations,

whilch are proved with difficulty, showed .changes on the order of
less than 0".1 and of doubtful importance. However, Lord Kelvin
suggested that the results can be of extreme importance. Hils
opinion was based on geophysical considerations, and he had
calculated that the dlsplacement in the aerial mass would cause
a wobble on the order of 0".05 to 0".5. 1In Kelvin's inquiry,
Newcomb analyzed (studied) .the latitude of Washington during

the years 1862-1865, for changes of 10 months, and he got a
difference in value of agbout 0".05 # 0".03. This result was
announced by Xelvin during the presidential ceremony.at the
British Association as a proof of free nutation.

When the phenomenon was examined, 1t was proven that Kelvin
was right as far as the event went; he was, however, mistaken
in computing the period. The exact solution was found, perhaps
characteristically, during an investigation of a completely
different kind, and before an opinion had been formed about
change frequency.

In 1884, Kiinster, in Berllin, started a series of measure-
ments in order to determine the constant of aberration, using
small differences in siderilal zenith distances, according to /8
a method discovered by Tolcott (U.S3. Asscciation of Engineers).

He was surprised when he found a change in the above con-
stant, an almost annual one. Having personally examined all
possible values for. errors, he was led to conclude that this
was due to a change 1n latitude on the order of Q".2. The
result was announced at the convention of 1888 in Salzburg,
and the International Geodetic Associatlon immediately became
interested 1n the matter. A rigorous 1nvestigation was carried out
in 1821 [siecl]. Measurements.of the latitude were taken simul-
taneously 1in Walkikl and in Berlin. The two stations are sepa-
rated almost exactly by 180° in meridian longitude, i.e., they
lie upon the same meridian. If, however, the rotational axis
is continuously changing position within the mass of the
Earth, then the astronomical geographic coordinates of different
places on the Earth's surface must also be changing continuously.
Indeed, the expected result was achieved with remarkable success.
The change indicated was on the order of 0".5, and according to
Professor Forster of Berlin, Kelvin's predictlon of 1876 had
been completely verified, and even the "abnormal movements of
the Earth's axls, on the order of 0".5 can be attributed to the
temporary changes of seéa level, due to meteorological causes."

During that time, S.C. Chandler, in Cambridge, had begun
a complete analysis of changes, trying to discover the
changes in latitude since the era of Bradley, i.e., about 200 /9
years earlier, and to show that many dilsagreements are due to —

KR TP
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latitude changes. One of the first announcements. Chandler
made was that the observations showed a time term wlth a
perled of 428 days, i.e. about 40% longer than the classical
value of Euler. This result was not the one expected, and

it caused doubts as to the validity of the observations.
However, Newcomh showed, 1 year later, that the retreat of the
Earth and the oceans could give exactly such an increase in
the period of 10 to 14 months (Newcomb, 1892). He attributed
the change to the easlly moving cceans, the remaining section
to an elastic retreat of the Earth. With this remark, Newcomb
Suggested tih.a-t . latitude observations can show, 1n one of
the best ways, the determination of rigidity (plasticlty) of
the Earth. ILater, Chandler discussed the probability of exis-
tence of an eternal term.in the latitude change; however, he
could not discover such a change. Chandler also mentioned that
he had determined some rather important variations with a
nonannual period.

For the better organization and coordination of research
relative to the phenomenon of polar motion, the "International
Latitude Service" (I.L.S.) was established in 1898, which was
renamed the "International Polar Motion Service! in 1963.

Important observations of this service on polar moticon are made

in observatories which are known as International latitude
observatories. 1In order that we be able to use the same stars, /10
the observatories chosen were all on the same paralle%, 39°0.8" T
and distributed as symmetrically as possible, according to
geographlcal longitude. Among the observatories mentioned

here, only those of Muzusawa and Ukiah have operated without
interruption until the present.

Unfortunately, the program of observations and reductions
was not continuous. We distinguish three periods:

l. The German, 1900-1922.7.
2. The Japanese (Kimura) 1922.7-1935.
3. The Italian, 1935--.

At the 1nternational latitude observatories, a determina-
tlon of the astronomical latitude of the place was performed
every clear night with the aid of an "optical zehith telescope"
by the method of Horrebow-Talcott. In 1912, the "floating
zenith telescope" of Cookson was introduced. In 1915, the
photographic zenith tube of Ross (PZT) was introduced in Green-
wich. This was introduced to Washington (U.S. Naval Observatory)
and later to other observatories,‘and‘finally to Greenwich and
Mizusawa. It 1s hoped that all the I.L.8. observatories will
be supplied with a PZT tube. Besides the FPZT, the "impersonal



astrolabe" of DanJon, of the
same accuracy as the PIT, is
also . widely used. 1In order

it 1s necessary that all the
observations now performed in
the I.L.S. ohservatories be
done in Mizusawa, where the
officles of the Polar Motion
Service have been located
since 1962.

to guarantee a greater accuracy,

2. Precession, Nutatlion and
' " Wobb'le

2.1. Wobble and Precession

Let us assume that we
take a picture of the stars
with a camera directed wverti-

A | eally upward, 1l.e., with

CO . direction opposite the vector
. denoting the direction of the
z gravitational field of the
Earthi:at that polnt. On these
photographs we observe that a
star describes traces which
seem to belong to concentric
circles. There are two positions on the Earth which almost con-
stitute the center of these concentric circles (elrcumferences).
We shall call these points poles of rotation. We define the

two points of the celestial sphere with respect to which a star
has no dally motion as instantaneous poles vertically above the
poles of rotatlon. The axis passing through the poles of rota-
tion and extending from one instantaneous pole to the other is
called axis of rotation (instantaneous).

If we note the poslitions of the poles of rotation within
a few feet (0.305 m) from their previous position, if the com-
parison of the position 1s made after the lapse of a year, we
wlll observe that the poles have -0 v e d . along an abnormal
elliptic trajectlile of a mean diameter of 6.10 m.

We define a fixed position of the pole leading to a base
near the center of the ellipse. This base defines the reference

" pole. Finally, the axis extending from the reference pole to

the center of the Earth 1s called the reference axis.

It is obvious from the above definitions that the reference
pole assumes a mean posiltion among the consecutive positions of
the pole.

U



Therefore, the pole of rotation willl describe a tra-
Jectile around the reference pole. With respect to an obser-

vation on a fixed star, the axis of rotation (instantaneous) /12

remalins fixed, while the reference pole (which is determined
for a daily motlon on the average) describes a trajectile
around the pole of rotation.

Ecliptie axis

.\\n Instantaneous axis of
rotation of the Earth

Trajectile of the
North Fole of
the celestial’
sphere ean positdon of axis of rota-
tion of the Earth (generally

/ reference pole)

/! Trajectlle of the pole of

the Earth

Now a distinction must be made among the following
phenomena.

The Instantaneous rotational axils describes within the Earth
a trajectile around the mean position of the reference axis.
It also describes a trajectile on the celestial sphere around
its North Pole in 25,796 years. The first phenomenon corresponds
to the polar motion and has various causes. However, the trajec-
tile of the instantaneous pole around the North Pole of the
celestial sphere is due to the phenomenon of precession of the
equinoxes and nutation of the axis of the celestial sphere.

In these two phenomena we observe the following. The change
of the instantaneous rotational axis in space causes a continuous
change of the coordinates of the stars on the celestial sphere,
while the astronomical coordinates of various places on the
surface of the Earth remain fixed. Conversely, because of the
motion of the 1nstantaneous rotational axis of the Earth within
the Earth, the astronomical ccordinates of various places of
the Earth and the astronomical azimuths of various targets in
these places continuously change, while the coordinates of the
stars on the celestial sphere remain fixed. Notice that the
changes of the astronomlcal coordinates and of the astronomical

¢
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azimuths which are caused by polar motion offer special interest,
because they have important consequences on the astronomical
determinations, the absolute meridian observations, and .

exact time measurement.

In summary, we conclude from the above that the instan-
taneous rotational axis of the Earth undergoes changes of
orientation in space. These changes are connected with pre-
cession and nutation. There are, besildes these changes, changes
of small period in the position of the instantaneous pole also,
or forced nutations. It should be noted that these changes of
instantaneous pole caused by change in orientation of the
rotational axis of the Farth are completely different from the
wobbles of the Earth relative to the axis and have different
causes. In other words, a distinction of two kinds of motion

can he made:

1. Change of the 1lnstantaneous axis in space because of
precession and nutation. A perlodic phenomenon.

2. Change of the position of the instantaneous pole on
the Earth. Resultant position due to a series of phenomena
of varlous small periods or even anomalles (wobble).

It would be disadvantageous if the discovery and study of
the phenomena of precession and wobble could only be made from
observations of the poles. Actually, the measurement of the
proper angle can be made in every value of the latitude.

The angles which we determine are the ones which give
the declination of a star and the latitude of the place of

observation.

The following figure shows the position for the measurement
of the angles for the ideal case of precession or forced nutation
(left), and wobble (right) (i.e., angle measured from the center /14

with respect to the planéoof. the equator).
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Let 8 be a star;.then ZA gives the direction of the gravita-
tlonal fileld (Z = zenith), and A is the fixed position on
the Earth.

The latitude ¢ is defined by the relation 90° - POZ (co-
latitude), where POZ 1s the angle between the instantaneous
rotational axis (or the instantaneous pole) and 0Z (or the zenith).

Let us consider the left-hand figure. The instantaneous
pole has been moved away from polaris.  As a consequence, we
have a change in declination but not necessarily a change in
latitude. This is the case of precession.

Let us now consider the figure on the right. The reference
pole M has been displaced to the left from the rotational pole
R. The declination remains the same; however, the latitude
has changed. This 1s the case of wobble.

Hence 1t follows that the change 1n declination (8) deter-

mines precession, while wobble is determined by the change in
latitude. A

2.2. Cause of Precession and of Forced Nutation

The changes of rotational axls of the Earth in Space are
mainly caused by the attraction of the Moon and the Sun in the
equatorial swelling of the Earth. Thls phenomenon would not
take place had the Earth not been a sphere or had the equatorial
plane coincided with the elliptical plane of the orbit of the
Sun and with the plane of the orbit of the Moon. Originally, /15
however, an angle of 23°27' was formed with the elliptical plane
of the Sun and an angle 23°27' z (5°9')k (k = real in the
interval [0,1]) withthe Moon.

Had the earth not been rotated, the result of such an
attraction would be the coincidence of the orbit and the equa-—
torial plane. However, because of the rotation, we willl have
the gyroscopic phenomenon of rotation, 1.e. the instantaneous
rotational axis of the Earth will describe a clockwise orbit
within 25,796 years. The obliquity of the ecliptic of the orbit
remains close to 23°27'. This phenomenon is known as precession
of equinox. If we call A&, A, C the moment of inertis with respect
to the principal axes of the Earth where C is the greatest value
of the moment of lnertia from the observed precession and the
mass of the Moon, we can compute the constant of precession.

H = = 0.00327293 = 0.00000075




Besides the Sun and the Moon, the other planets also apply
a small attraction, giving a small precession. = The combination
of the orbits of the Sun and Moon 1s connected with wobbles
of small period around 18 2/3 nutations of the Moon. The
small periods imply originally a motion of the instantaneous
pole to and from the poles of the ecliptic, an inclination
which 1s called nutation (forced nutation # Eulerian free
nutation).

We conclude from the above that because of the noncolncidence
of the equatorial swelling of the Earth with the orbits of the
Sun and Moon, we have the phenomenon of precession. For the
Same reason, we also have the phenomenon of nutation (or forced
Especilally for nutation, because of the change of

nutation).

the inclination of the plane of the Moon orbit with respect to

the equatorial plane having a period of 18 2/3 years, we will
finally have a composite curve described because of the motion
of the instantaneous axis sweeping the surface of a cone within
25,796 years, and because of a motion of it saweeping the surface
of an elliptic cone at the same time within 18 2/3 years.

(That is, precession 1s a result of the Moon and the Sun;
nutation is & result mainly of the change of the Moon's orbit
and less because of the attraction of the Moon and the Sun.)

Corresponding figure.

o« Thelequations givingopres:.
cessiohn and. nutation are:

" “'P Me ’ .
n : . j
| i (}{;%}::d?(?-ﬂ5/+¢fyn}
/ (_ﬁ‘ L& = P 2/ 1"4&/. ) :
where yg is the position of
0 the vernal point vy at a certain
moment and y is 1ts positidon
after a time period t, wg is
the mean value of the obliquity
‘ of the ecliptic, a = 50°.4 and
Jg/ =psind 7+ gsinZ Pyt bsind ¢ Csin@ 4 . .. . \
5 : N
Jw =ﬁ -GQS_g;sf?"CDS'fﬁbe(COS'ffC( cos C+ ... .\\
where ig = geocentric longitude of the Sun; b, ¢ proper
~Am = geocentrle longitude of the Moon.by, c3 coefficients
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Note. ©Nutation: 1. Immutable sweeping the surface of a cone
arcund P.

2. Semiellipse because of change in the

Moon's orbit.

F Y ORI

3. Displacements around the mean position
within a distance sw because of the Sun
and Mocon.

3. General Remarks on the Methods of Observation and Reduction /17

3.1. Results of the Study of the Phenomenocon

As we have already mentioned, the International Latitude
Service was established in 1898, and renamed the International
Polar Motion Service in 1963. This service collects the results
of determinations of the astronomic latitude which are obtained
in the international latitude observatories. Based on these
data, this service computes and publishes, within a very short
period of time, temporary values of the x,y coordinates of the
pole, in its monthly periodical "Monthly Notes of the Inter-
national Polar Motion Service.™

Detailed description of the methods used for the computa-
tion of the temporary x,y coordinate values cf the pole, and
also improved values of these coordinates are published in its
annual periocdical "Annual Report of the International Polar
Motion Service," approximately 2 years after the corresponding year.

The final elaboration of all the related data 1s done later,
and the final values of the coordinates of the pole, x,y, are
published.

Both the final and temporary values of the coordinates of
the pole which are computed by the International Polar Motion
Service are published with much delay, and therefore it is
impossible for them to be used for the présent needs of astronomy.
In order to aveold this difficulty, the "Service Internationale
Rapide des Latitudes" was founded in 1955; it computes and
publishes the temporary values of the x4,y coordinates of the pole /18
for the next month. For this purpose, the service, which is
located in Paris, uses the results of the determinations of the
astronomic latitude and of other astronomical observations
related to time as well, which are carried out in 68 observa-
tories distributed over the whole surface of the Earth.

In.... 1965, the "Service Internationale Rapide des Latitudes"
merged with the International Time Office (Bureau International
de 1*Heure) which is also located 1n Paris.



This office publishes the monthly journal "Bureau Inter-
national de 1l'Heure, Circuloire B/C," in which, among other
things, the temporary values of X,¥ are contained, and also
the predicted values of the X,y coordinates of the pole.
Specifically, in the issue of this journal which circulates
at the beginning of the month m + 2, the following are con-
tained, among other things:

1. The temporary values of the Xyy. coordinates of the pole
for the month m, which are computed on the basis of observations
made during that month.

2. The predicted values of the X,y coordinates of the
pole for the month m + 3, which are computed by means of extra-—
bolation of the known polar orbit until the month m + 1.

In other words, we see that the temporary values of the X,y
coordinates of the pole that are given by the International Time
Office are published with a délay of only a month, and the
predicted values refer to the month following that of publication.

The temporary values of the Xyy. coordinates of the pole
that are computed by the International Time Office are published g;g
in another Journal also, edited from the same offtice, the
"Bureau International de 1'Heure, Circuloire D." Finally, a
detalled description of the methods used for the computation of
the temporary values of the X,y coordinates of the pole and
also improved values of these coordinates are published 6 months
after the end of the respectlve year in the annual Journal
"Bureau International de 1'Heures, Annual Report," edited
by the International Time Office.

3.2. Definition of Frames of Reference

In order to study the phenomenon of polar motion, we will
have to deflne a frame of reference with respect to which we
wlll obtain the instantaneous coordinates X,y of the instan-
taneous pole at each moment. In Chapter 2.1 we saw that in
order to study the motion of the instantaneous pole we define 1
certailn position of 1t as the basls of g frame of reference,
and we compare the consecutive positions of the instantaneous
pole with respect to the defined basis. In other words, an
arbitrary position is sufficient to be defined as a basils.

Of course, among the infinite positions we will choose the one
that serves our purpose best.

For the choice of this posliticn ,and the corresponding frame

of reference, we observe from the first that because of the fact
that the dimensions of the orbit of the pole on the:surflace of

10



the Earth are very small (in an angle 1" with the center of

the Earth's mass as a vertex, .an arc of about 31 m length
corresponds on the surface of the Earth), we can assume in a

first approximation that the polar motion takes place on a

blane tangent to the surface of the Earth at a point A properly
chosen. If we also choose on this level a proper Cartesian /20
coordinate system Axy having an origin in the point A, then in

ocrder to define the position of the instantaneocus pole T at

each moment, 1t is enough to give the Cartesian coordinates x,y

of the point T with respect to the system axy.

The best soclution, of course, would be to choose as point A
the point where the principal axls of inertiz of the Earth
intersects the surface of our planet. However, the position of
the principal axls of inertia of the Earth within its mass is
not exactly known. Moreover, this axis 1s continuously changing
position within the mass of the Farth because of contlnuous
distortions of the masses In the intericr or on the surface of
the Earth, which have as a consequence corresponding distortions
of the inertial moments of the Earth. Because of this, we must
find another way of choosing the point 4.

The way to choose the point A has repeatedly changed in
recent years. Thus, a frame of reference called Wauach 1900-
1905 was used up to 1959.

Then point A was chosen to be the mean position of the pole
during the time period 1900-190%5, and the frame of reference
defined this way was called the New System 1900-1905. At the
same time, however, certain astronomical services were using a
different frame of reference, having as the origin the so-called
mean pole of epoch. '

After the decisions of the recent general conventions of
the International Astronomical Union (Prague, 1967) and of the
International Union of Geodesy and Geophysics (Switzerland, 1967),
a new way of defining A is now in use since January 4, 1968, and
the thus-deflned point A 1s known under the name Conventional
Internaticnal Origin, abbreviated C.I.O. or 0.C.I.

~
o
'_l

The conventional international origin is defined in such a
way that the corresponding values of the astronomical latitudes
of the five International observatories of latitude operating
today are equal to the values of the astronomical latitudes of
these observatorles that were used by the International Pclar
Motion Service in the year 1967.

Notice that the position of the conventional International
origin on the surface of the Earth colncides with the origin
of the new internaticonal frame 1900-1905. This is because the

11



origin of the new international system 1900-1905 is defined to
be the mean position of the pole during a certain time period
(1900-1905), while the econventional international principle is
not related to the position of the pole during a certain time
period, but is defined by means of the values of the astro-
nomical latitudes of the International Latitude QObservatories.
Therefore, if we need to reconsider in the future, for any reason,
the values of the coordinates of the pole during the years 1900-
1905, then the position of the origin of the new frame of
reference will change, while the conventional international
principle will remaln unchanged,and therefore it will coinclde
with the origin of the new frame of reference 1900-1905.

The directions of the x,y axes are chosen in such a way
that the x-axls is tangent to the meridian of Greenwich and
its positive course is pointing toward Greenwich, and the y-~axis
is perpendicular to the x-axis and its positive course points
toward the corresponding meridian at the value of longitude A = 90°.

With respect to this system, the temporary values of the
X,y-coordinates of the pole are computed and published, starting
from January 1, 1965, by the two international services, that is
the International Polar Motion Service and the International /22
Office of Time.

However, for the computation of the temporary values which
are published by the International Polar Motion Service, only
the observations of latitude which are made in the five inter-
national latitude observatories located on the 39°8' parallel
are used, while for the computation of the temporary values
that are published by the International O0ffice of Time, both
the observations of latitude and those of time which are
made in the 68 observatories that cooperate with this office are
used. Therefore, the temporary values of x,y that are published
by these two services do not, in general, agree. In any case,
the differences occur partially because of the difference in
methods used by the two services ,for the correction of the
systematlc errors of the observations and calculation of the
X,y values.

Notice that the results of the observations made in the
above-mentioned 68 observatories cooperating with the International
Office of Time are also used by the International Service of
Polar Motlon for the computation of the final values of the x,y
coordinates of the pole. Obviously, because of the variety of
instruments and methods of observation used in these 68 obser-
vatories, this material is much - less homogeneous than the
total given by the observations made in the international
latitude observatories.

12



3.3. General Method of QObservation

The determination of wobble (general disturbance) includes
Precise measurements of the latitude according to the figure
in Paragraph 2.1. The meridian civile gives the fundamental
- method for the determination of latitude. The instrument
We use is a telescope which can rotate around a horizontal
axis and which is oriented from East to West.

Let Zn be the value of
Zzenith distance at the upper
culmination (uc) and Z, be.
the value of zenlth distance
at the lower culmination (1lc)
12 gidereal hours later. We
shall obtain:

where 6 = 90 -~ ¢ , p = 90 - §
{(co-declination).

The above method is known
a8 the fundamental method of
determination of latitude and
declination because the value
of one of these 1s obtained

Fig. 1. independently of the other.
This method has the disadvan-
tages of the upper and lower
alming of the same star. In other words, we must work with
stars which are always visible, 'and these must be such that they
have early upper culmination, so that we will be able to observe
them at the lower culmination in the early morning hours. This
can be more easlly done during the winter, when the nights are
longer. However, this is one mcre dlsadvantage for the obser-
vations. This method consists of calculating the difference
between the almost equal zerith distances of two stars that
pass from the meridian a few minutes apart, one of them north
and the other south of the zenith, and not far from it.

The angle 6 1s connected with the two crossings with the
meridian, having the relations 6 = p' + Z', ¢ = p - Z (Fig. 2).

From these, we conclude that

[5’:'—% (Prp)+% (2-2)
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The value of the difference (Z!' - Z} can beimeasured, and
the declination of the pair of stars can be known. . Talcott's
method 1s not a fundamental one. However, 1t is the most
commonly used because of the following advantages:

1. The use of zenith stars reduces the optical diffraction
error. This follows from the formula of diffracticn.

2. The computation of the small angle (Z - Z') by the use
of a micrometer i1s much more precise than the calculation of
Zu, 2y, from a graduated circle.

The zenith telescope 1s the classical instrument in Tal-
cott's method. By aiming from an exact horizontal plane (disc),
the felescope 1is set in the proper zenith distance for the star
which first approaches the meridian. When this star passes
the meridian crosshair, its distance from.the center of the
cross l1ls measured by a micrometer (great advantage). Then,
the telescope rotates 180° around a vertieal axils so that it
points .north of the zenlth. Of course, if 1t were pointing
north before, and if it 1s necessary, the telescope 1s set again
until the plane (horizontal dise) becomes horizontal. The
important thing is that the angle between the horizontal disc
and the telescope must remain constant. Then the telescope
(1.e. as long as the angle remains constant) is set at the
same zenlth distance as before, but on the opposite side of
the zenlth. The micrometer measurement is repeated for the
second star, and comparison of the two measurements gives the
value of (Z' - Z) without the need for dependence on a graduated
eircle (the vertical disc), but only on a smaller displacement.,
In other words, the main advantage of Talcott's method is that
we do not use the graded disc but only the micrometer knob.

This way, we avold arbitrary errors of divisilon and reading.
Obviously we will have errors of the micrometer knob, which
will be mentloned later in more detail.

~
™
Tl

Another important advantage of Talcott's method is the
elimination of diffractlon because of the value obtained.

Moreover, this method makes many more stars available
for observations, and finally, it does not require a star
that culminates very neaw the zenith for equal accuracy. Some
alteratlons have been made on the zenith telescopes. The
horlzontal level in the photographic zenith tube (PZT) (cylinder)
has been replaced by a free mercury surface by which the Image
of the star is reflected on a photographic metal-coated plane
which rotates around a vertical axis. We take severzal exposures
of the single star before and after rotation when the distance
2Z between the Images 1s computed by a "measurement machine.™
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The complementary latitude & (co-latitude = 90 - ¢) equals

P * Z where the zenith distance has the (+) sign if the star
is north of the meridian, and the (-) sign when it is south
of the meridian.

method from that of Talcott. A ray coming from a star and a ray /26
reflected on a mercury surface enter the lens of the telescope
through a 60° prism, making two images. When the two images
colneide, the zenith distance of the stars is 30° (Danjon,

1958). Determination of time and latitude are dependent on

each other and the knowledge of the right ascension of a star

is required to be added to the declination {(methods of latitude
determination). The above does not hold for the photographic

zenith tube (PZT).

3.4, General Methods of Reduection

The arithmetic value of the disturbance (wobble) is on
the order of 0".1l. The probable error of observation of a star
is on the same order. Therefore, for studying the wobble, we
must limit the probable error of observation. About a thousand
observations were done monthly in a station, on the average, so
that the probable error was determined to be about 0".01, pro-
vided the errors were just random. A comparison between the
latitude observed in Washington and the results of the I.L.S.
stations showed a difference on the order of 0".1 (Fig. 7.4).
These and other proofs showed that there are significant systematic
errors.

Reduction from the I.L.S3S. stations follows a certaln
process. The main difficulty 1s due to the pace of the micro-
meter knob and the decllnation of the star under observation.
Nothing 1s known a priori with satisfying precision for reduction,
and in.the final analysis, the latitude observations give infor-
mation for the various corrections. The corrections of the pace /2
of the knob inelude an annual term which can be as wilde as the -
annual motion of the pole. Melchior (1957) thought that the
accuracy of the observations could be known in geophysics from
the accuracy of the pace of the knob.

In order to make the errors due to the pace of the knob
smaller, the group of latitude stars (which are arranged in
Talcott's pairs) is chosen in such a way that the sum of all
the small measurements in a certaln night is the smallest possible.
Unfortunately, the ccordinates of the latitude stars are so
influenced by precesslion after a decade, and some of the stars
from the Talcott pairs are so unsatisfactory. that they must be
recomputed. Changes in the catalogues were made in 1912, 1922.7,
1935 and 1955. 1In Cohn's catalogue, which was used from 1899
to 1935, some declinations were known to have an error.
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The most accurate catalogue is that of Boss; it has been
used since 1935, but 1t also includes some errors. Finally,
the number of statilons has changed from three (1922.7-1935) to
six (1901.7-1906).

All these changes have obviously caused some inhomogeneity
in the observations.

The final coordinates which are published with a few years?
delay after the temporary coordinates include corrections for
the pace of the knob and the declination of the stars and,
according to Melehiar, the temporary coordinates are more trust-
worthy than the ones obtained after correction.

According to the I.L.S. notes, the estimated reduction to
(90 - ¢), 1.e. A8y from a station u west on a longitude iy is
given by the relation: /28

|

L
i

~ Ay (+7 = () coy 7 #ﬁz/(*) SIY Fee + 2 (4]

where x(Zmy1) 1s the displacement of the pole of rotation toward
Greenwlch, y(zmp) is the displacement along a direction 90° west
of Greenwich and Z 1s the correcting term which was introduced
by Kimura. The coordinates x,y and Kimura's term 7 are deter-
mined by the method of least squares on the a6y (difference) of
the latitude observations in all stations.

The physical meaning of Kimura's term, of which the absolute
value is not more than a few tenths of a second of an arc,
remains unknown. Kimura's term has a polar change in latitude,
l.e. as 1f the latitude were increasing or decreasing the same
way in all I.L.S. stations. Usually this change is on the order
of 0".03. This term eliminates errors (1) in the values of
the motlon and declination of the stars under«observation, (2)
coming from the fact that we do not take into consideration
differences 1n these stars, and (3) of the fundamental constants
of astronomy (nutation, annual reduction, obligue course, etc.)
The term does not disappear if we substitute the PZT for the
zenlith telescope. :

It has been observed that the term Z{(t) tends to have the
same point in both hemispheres. (Kimura's latitude reductions
have the opposite slgn for the northern and southern hemisphere.)

This 1s the_ expected difference from a displacement in the center

The rest of the changes that are not correlated among the /29
stations are called "local Kimura terms" of certain direction.
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The latitude computation is relatively easy, except the
correction above, and is given by the formula

Ay 4] =X 04) cOS Ty ¢ Z (1) eos s Zv) .

The local change is correlated with wind, pressure, and
other meteorological changes. The optical diffraction is
minimized by the use of zenith stars, but thls zenith diffrac-
tion can give wrong results. It 1s useful at this point to
distingulsh the "room diffraction" which is connected with the
conditions of the immediate environment around the telescope,
and with the whole atmospheric diffraction. Pzzbyllok (1927)
compared the latitude measured in the Washington Naval Obser-
vatory with that determined by I.L.S. After that, he computed
the reductlion and compared it with the local wind direction, and
he found that during a northerly wind, the latitude of Washington
increased by 0".02, while during a southerly wind, it decreased
by 0".02.

He attrlbuted this difference to the "room diffraction.™

Pzzbyllok suggested that the monthly values at the stations
could have an error on the order of 0".25, while the annual
values could have an error of about 0".1 (!)

During the last 2 years of research at the original
Tschardyul station, the average latitude was found to have
a change on the order of 0".1l. Lambert (1922) attributed this
abnormality in the observations to the diffraction caused by
change 1n atmospheric conditions as, for example, the displace-
ment of the Amu Darya River from its former position about:3.km /30
toward the statilon. T

It had been expected that under normal conditions the
seasonal diffraction change would have been eliminated by Kimura's
term, and that the relation between room diffraction and the term
Z would have been found. There is, however, no guarantee that a
significant error due to diffraction does not remain in the
computed annual latltude change. Also, a tendency to: change
can exist 1n the mean term of the zenith distance accompanied
by a change lndclimate during the 20th century. However, this
requires further study (as does sideways diffraction).

Of course, the use of some small astronomical results is
permitted for the determination of latitude. These ineclude
Battermann's result for the oblique course and small nutational
terms due to the disturbance by perturbation of the Earth's
orblt caused by Saturn and Jupiter. The declination is also
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influenced by the wobble of the rotational axis with respect to
the fixed axis (the fixed axls 1n space if no external torque
exists).

Every geophysical phenomenon causing wobble should be
connected not only with latitude change, but also with declina-
tion change.In the computation of latltude, according to
Talcott's formula, the declination is not corrected for wobble
(sway) but wobble (sway) is dependent on the change of lati-
tude with time, and the precession constant H (= 0.003) is
insignificant. Chandler did experilmental research on sway .,
but he could not detect it. "The comparison of the absolute
and the different definition shows that the phenomenon refers
completely to zenith change and is not separated in a change
of the zenith and of the astronomical pole (at the same time)." /31

Concluding the chapter on generalities, we can observe
the following about the needs in observations:

1. The Kimura term has not been investigated fully enough,
8o we do not know what 1t depends on andihow it acts. From
our hypotheses, the seasonal change of diffraction should be
e¢liminated by the Kimura term, and the relation of this term
to the "room diffraction" should have been found., This has
not been achlieved, and requires further study.

2. Besides the Kimura term, the concept of "local Kimura
terms" was also introduced, terms that are generally dependent
on local meteorological changes. We have shown that these
changes have sufficiently large values. Therefore, the results
from the statlons to be compared should be reduced to similar
conditions. Besides this,and the examination of "room diffrac-—
tion," the problem alsc depends on general meteorclogical change
in a place, due to changes in conditions, e.g., a displacement
of a river or a change in climate with succeedlng centuries.
This also needs further study.

3. Within the above framework, the general problem of
"optical diffraction" appears. In other words, we deal with
the general problem of diffraction, which is of interest,
examined elther as general atmospheric diffraction or as "room
diffraction," and there 1s much research to be done on this,
because of the phenomena of magnetohydrodynamies in the last /32
layers of the atmosphere, which are believed to affect optleal T
radlation. Filnally, the problem of sideways optical diffraction
always exists.
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4, We have already men-
tioned that some dlsplacements
In the center of mass of the
Earth are believed to be of
physical causes, from the term
Z(t). In other words, the
relation between the core and
crust reqguilres deeper study
and examination and 1s of
decislive importance for the
whole problem of polar motion.
So we see that there are still
some unsolved problems. The
poslitive research for answers
gives & measure of the approxi-
maticn of the values found.

Fig. 2.

5. We should also regard with some skepticism the homogeneity
of the static analysis of all stations, since each one has some
geophysical errors. For example, take the phenomenon of earth-
quakes that is more common for the area of Mizusawa and less
common for Ukiah and Carloforte. Also, other, more general
phenomena such as the change In the flow of a river, vegetation,
darge technical construction, etc. must be taken into account.
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4, DETAILED DEVELOPMENT OF THE METHODS OF CORRECTION AND
" REDUCTION ' : '

4,1, Introduction

In this chapter we shall study in detall all the methods /33
that are used for the observation of stars and the reduction
of the results. Together with development of the methods,
examples and tables will be given, so that this chapter will
constitute the basis for further study. After these, the orbit
of entering quantitles of the pole will be given in a figure,
with respect to the new system 1900-1905, which coincides
with the CIC for the time being, and the motlons of the pode
will be given as a summary, which constitutes the final purpose
of this work.

For the study of the methods, information is given for
the final results of the first volume of "Annual Report." This
volume includes the results of the latitude observations
obtained durilng 1962 in the stations and observatories connected
with the International Polar Motion Service, but 1t does not
include the results of the time observatories which refer to
polar motion. We describe below the results from 32 stations,
i.e. five I.L.S. latitude observation stations, and 27 other
stations with 32 instruments.

Thls study can be separated into the following chapters:

The first chapter, that lncludes descriptions of the
original information glven from the five I.L.S. gtations and
the methods of reduction used by the Central Bureau. This
same chapter also lnecludes the results of the latitude check
for the five I.L.S. stations according to the information of
the Seilentific Council of IPMS.

T
I

Chapter 2 includes brief descriptions of the results firom
the latitude observations. obtained in the independent stations
and sent to Mizusawa, or the results published in the "bulletins" .
of the related stations, together wlth the differences between
the observed latitude and the computed one.

The coordinates of the pole are obtained by using the
available information from all sources. Also, they are studied
so that they become more appropriate for the computation of the
coordinates of the pole, in accordance with those already
obtained by the I.L.S. In coordinating the results of the inde-
pendent statlons and those of the five I.L.S3. stations, some
problems seem to exlst which must be solved, such as the
determination of the mean latitude in the new system 1900-1905
of I.L.S., the use of Kimura's term Z, and the comparison
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of the star catalogues used by the respective stations.
I.1..8. only by the results of the five T.L.S. stations.

L,2, Chapter 1: Results from the Five T.L.S. Stations Lying

‘ Because
of thls, the determination of the coordinates of the pole was
defined in accordance with the new system 1900-1905 of the

“on the 39°8' North Parallel

f Observation

During 1962, the first IPMS year, the followlng five I.L.S.

stations continued the same observations of latitude,with the

usual zenith telescopes, ‘from the previous year:

Mizusawa, Japan
Kitaby USSR .i.Li 5
Carlofortey Italy
Gaithersburg, Mar., USA
tkisn;, UsA

-

No change has been made in the program of observation and
in the stars taken in 1955. The catalogue includes 144 stars
and forms @ total of 72 pairs which are arranged in 12 groups,

= -9

_yh

-0
5h

_ 8\1’1

oy

485
50°

each of which includes 6 pairs and occupies 2 hours of the
right ascension, as is shown 1in Table 1.
placed in order according to the general catalogue of Boss.

In placement, the centennidl changes are gilven, and one half of

The stars have been

the centennial changes of the annual changes, i.e., the changes

of the centennial changes. These will be denoted as CV (cen-

tennial changes) and SV (eternal changes).

are given for 1 year, PFor the right ascension, 100 values of

The same motions

the annual change and 50 values of the eternal change are given

in the general catalogue of Boss, and also CV and SV for 1950.
The CV and SV for the declination are computed by:, the follow-

ing formula:

.((//.; =%'—‘ Do cos &o+ /00 g’

40,8 sy rayds)].

N
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where o

and &, are the right ascension and the declination for
1950.0 which are glven in the General Catalogue, and Mo, Ng,

(dn/aT)y are the centennial values Tor 1950 which are computed
by the following formulas,given earlier by Newcomb.

=4 808506+ 277945 T4 07 000/27 2

77 = 20944685 - 018533 T — 0" 00037 72 I
&
FE=-0" 85330 000 74T

where T is measured in tropical years from 1900.0.
values of m, n, dy/dT for 1950 will be:

The arithmetic
720 & 46097 903 |
Vo = Z&'&’#f 25p

& .
Fe= -2 8533

Applying the above values of the changes of CV, CS for the
catalogue, we will have the fact that the mean positions of the
stars for any other epoch t are com
formula:

puted by means of the following
P

Ho +(C M)yt + SV Sy ¢ %+ (3rd tern.), £
&y = o+ Ceplp b+ (fk/é‘. £%4 p3md term/‘r b '!I

where t is measured in tropical centuries from 1950.

The duration of the days of observation for every composition,
the following periods:

consisting of three consecutive groups which are symmetrical with
respect to midnight, was a month.

The groups were observed during
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4,2,2. Static Analysis of the Observations

™~
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14,679 pairs of stars were observed at the five I.L.S. stations
during the period from January 6, 1962, to January 5, 1963. The
monthly numbers together with the values of the nights of observa-
tion are given in Table 2.

4.2.3. Correction of the Telescope Errors

The telescopes were well arranged and no cerrection was referred
during 1962. Certain errors of observation are shown in Table 3.
The values of the inclination of the horizontal axis 1, and iy are
the mean monthly values from every night in 1 month in the unit of /39
time (seec) , except for Carloforte, for which the values are
given in the unit of division of the horizontal disc. In Galthers-
burg, one special arrangement was invented for the elimination of
the sideways bending of the tTelescope by ralsing the telescope
from the horizontal axis by & quantlity equal to the bending.
Therefore, the values of inclination for the same number are more
regular and more comparable to the ones of other stations. This
method was proved by E.L. Williams in 1932, and 1t has been used
from that time on in Gaithersburg.
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EXAMPLE: TABLE 2.

1

m"“‘ Miznsawa. [ Hitalb Cazbobect Ga:}:'/feeyém:o« ety \
1942 Hight  Pair Night  Pair " Aight  pair
Jag. | /3 {02 P 17

Feb. | {14 107 9 45 " '

Mac. | 44 148 ¢ 07

Apr. | 10 s ll 5 gy

May | /2 (76 9 (47

Tuy. | {3 182 A0 35

Jul | 14 124 | 20 32¢

«ﬂ(jr- 5 | {08 " 23 365

Sept | 14 /79 16 . 287

det. | {7 157 o 134

HNov. | (4 134 2 114

pec.| 13 182 1z e

Total] 481 (737 7 zswu
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EXAMPLE: TABLE 3.

Miziesaewa 962

Tnclimation] Date of .| Bending | Aiming ©| - Azimuth |

MogZ6 |Ze  ¢w |Observaticd b | < 2 S
Tar |02c -0 A 2538 -,2,";2_: 9%09 ,_'4’;4
25 B 249 | 256 - |-937 4/5

4,03 l—qda’ a' . 222 241 o1z - 4,20

EN - 273 286 g0 - qo7

Gailh ertfu rg /962

Inclination
Mo th T 7
Before the <LAftq; the . _#
| Observation - [ Observation
1 ze fw le . fw
PERR
gan |-1103  fles | -gor 4y
Feb. | —t,00  foo | s40f - 40/

A further explanation of the errors of inclination in alming ~ /40
(direction) and of azimuth is requilred in order to understand the
corrections of these errors.
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4.2.3.1. Errors of Ineclination

An.: error of ineclination is caused because of the nonhorizontal
axis of rotation of the telescope tube. The inclination i of the
horizontal axis of the telescope tube with respect to the horizon
has an influence on the exact time of observation of the culmina-
tion of a star. We shall try to explain this influence.

Suppose that we have the
celestlal sphere, the equator and
the points of horizon &, B, 4, N.
The horizontal axis does not lie
l on the horizontal plane. If we
alm with this axis ,at .the point 4
( on the east, the axis actually
I would pass from A' #¥ A so the
inclination of the horizontal
axls will be (AA') = i = (ZZ').
Therefore, the optical axis of
the telescopetube rotating arocund
- - the horizontal axis, instead of
descrlbing the meridian, will
describe a great circle through
the points B', Z', N having as a
pole the point A' (point Z' is east of point Z).

Therefore, if we alm at a star, we will take as time of
culmination the time at which the star is passing from the
meridian of the instrument. The meridian of the instrument 1s
different from the meridian of the place of observation, and the
star will culminate in less time than the time it needs to
describe the are (ri'). We draw the hour circle from polnt z'.

This circle intersects the equator at a point K'. We will have:
(zr') = (KK') cos § but (zz') = (ZZ') cos Z: (1) /41
So (KK') cos & = (ZZ') cos 7= = 1 cos ZI (2)

Relations (1) follow from the ratios.

It is also true that

(/78 )= w= (72 " and (Z2/ = (wz)- ()3) = - J;;\

(KK!) cos § = i cos (¢ ~ &)

So the arc (KK') expressed in time is given by the formula
(KK') = 1 cos (¢ -~ §) sec s. '
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This formula gives the correction from the error of
inclination i which we have to apply in order to bring the
Observation from the meridian of the instrument te the meridian
of the place of observation. Exactly this error is glven by
components on the previous table, 3o that we will correct our
results, eliminating errors caused from the nonhorizontal
position of the horizontal axis.

'ﬂ}Q}B}E}"ErTOfS‘Of‘Aimihg'(DiréCtion)

Thls error is defined as the difference of the angles C
between the angle of the optical axis of the telescope tube and
its horizontal axis and 90%. That is, this error is due to the
optical axis not being perpendicular to the horizontal axis.
Because of that, the optical axis will, during the rotation of
the telescope tube, describe a small cirele N'Z'B' parallel to
the meridian of the place of observation and lying farthest
east of 1it.

Suppoze we have the
celestial sphere, its equator
II' and the horizon. We will
have:

(NN") = (BB') = (22Z') = C

Therefore, when we aim
at a star and see it in cul-
mination, the star actually
is culminating on the meri-
dian of the instrument and /42
net on the meridilan of the
place. Because of that, a
correction is needed to
reduce the meridian of the
instrument to the merildian
of the place of observation.
If z, ' are the points of
culmination of the star on
the meridian of the place
and the meridian of the instrument, respectively, then the time
which is necessary for the star «tdé! describe the arc (Zz') glves
the time before which the culmination will occur. In order to
find the necessary tlme for the star to descrlbe the arc Iz', we
must find the hour angle of EI'.

For this purpose, we write the hour clirele of ' which
intersects the equator at the point K'. Then we wlll have C =
= (£z') = (IK') cos §. Therefore, the arc (IK') = C sec &, and
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it gives the correction which we have to apply in order to
find the moment of crossing the meridian of the place.

" 4,2.3.3. Errors of the Azimuth

The error of the azimuth is defined as the angle & between
the optical axls and the meridian which can be formed because
of noncoincidence. If we take the east end of the telescope
tube, this will result in that, instead of intersecting the
horizen at the point A, it willl interseet it at another point A'.
It will be (AA') = 8. During its revolution, the optical axls,
instead of describing the meridian of the place of observation,
will describe another great clrcle B'ZN'.. Therefore, as the
moment of culmination we will not consider the moment at which
the star drosses the meridian of the place, but the moment at
which 1t crosses the meridian of the instrument. The arc I:f
gives the time interval during which the culmination will be
cbserved earlier. (Tt must be noted that the describing of a
great circle is a difference 1n order to avold confusion with
the error of aiming.} Here the axls is perpendicular, but it
forms an angle.)

L
=
(WS

-t P S S T S S R R
ree- As owith theiprevious.i
errors, 1n order to determine
this time we consider the
hour circle of point '/

We will have:

(zzt) = (KK') cos &
(1)
KK':

however, (ZZ') = (NN") cos NI =
= 8 sin (¢ - §).

= ¢08 §

Therefore, (KK!) =
§ sin (¢ - &) sec §, where the
arc (KK') is expressed in time
and A 1s given with component
(6 east, & west).

If we assume that the above errors btake place, which is
true, the total correction which we must apply will be (Mayer
formula):

£ =C sec.§d + 1 cos (¢ — &) sec 6 + 2sin (¢ — §) seec &

If we develop the sin(¢-68), cos (¢-6) and put
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K
A

1ocose t Asing 43 5 = K + Atané + Csecé (Bessel)

1 sin¢ - Acosg

From the above formulas, consequently, we have the fact that
in order to avoid the errors of the instrument, we prefer to aim
at stars which have a small value of declination.

In the above manner we correct the observations, 1f we take

into consideration the error due to sideways bending of the instru-
ment.

The atmospheric terms are usually measured every hour at
the time intervals of the latitude observations. These are
summarized 1n Table 4, Abbreviating all the mean monthly values
for every group, that is, nightly values, morning, and inter-
mediate, are.arranged in the table. The atomic hour values of
Tex, Ttel and B were used for the determination of the diffraction /44
and the correction of temperature for the constants of the instru-
ment in the conversion series. We distingulsh the following
quantities:

nTex, sTex External temperature in centigrade with respect
to the north and south side.

Tex Mean value of the above two gquantities

ATex Hourly change of Tex.

nTex - sTex Change between external temperatures, north minus
south.

nTin, sTin Internal temperature with respect to north and

south side.

Tin Mean value of the above guantities
nTin - sTin Difference between internal temperatures, north
and south
?tel . Te;gscope temperature
éex - %in . bifférence between external and internal temperature
Tex - Ttel Difference between external temperature and

telescope temperature.

Tin - Ttel Difference between internal temperature and
telescope temperature.
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BU |

Barometric reading in mmHg corrected for:. both
the temperature and gravity at Mizusawa and
Ukiah, but only for temperature at Kitab, Karlo-
- forte and Gaithersburg.

AB Hourly changes of B
SE Disturbance of the scale images (1~4) (better-worse)
ST Stability of the scale images 1-U4 (better-worse)
W.V. Velocity of the wind near the telescope in m/sec
W.D. Direction of the wind estimated on the right-hand
gidd from North
NS - comp Mean value of the compenent of the windovelocity /45
from N + 8 during the observations.
EW - comp Mean value of the component of the wind veloclty
from E - W during the observations.
Humidity Relative humidity during the observations
The following example has a sample of measurements and cor-
rections of the above magnitudes at Mizusawa in January, 1962.
MIZUSAWA, JANUARY 1962.
Group 7 7Ex s7ex 7ex A Tex o Jer-s]ex
wr, T, | e £ wm|e i o | & i e e { wmle 7 m
~2%2 =379 3R 2P 309 <3791 g4 037 0217
7 ¢y 57 iy 7y g 7ty 27 779 - 5"7117-
e z o | O l | e z wr | e 7 77 e 7 %7 .
-2756 3F5 <3776 |- 7054 -2055 -G ~g'0Z
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tet AT ses Tex - 7¢y Tex-Ties

Trg — Tpef
B (7] A8 (onoy) S£ ST WD
wqﬁﬁ%egj NS =comb Cmfser gEhV—‘COnmé (or/sec)

Summarizing what has been sald up to now, we note the
following:

1. In order to eliminate the errors, working and using
Talcott's method we observed 72 pairs (144 stars) which we
separated into 12 groups (each group has six pairs). Each
month we observe three groups, so that by finding the mean
values of a group, we eliminate random errors.

~
=
h

2. We correct our observations forw the instrumental errors.
These correctlions were.‘deflned, justified and applied so that our
results will be corrected and ready for reduction.

3. The various atmospheric terms were described, as well
as the magnitudes which they produce; we take these into con-
slderation during reduction. Therefore, we can now develop
the methods of reduction of the observations.

4,2.5. Methods of Reduction

The indlvidual walues of the latitude observations were
computed by the formula:

g (Gsedr)+4 (%5 ~F2)

where &8, Z are the apparent declination and the apparent =zenith
distance of the star. The indicators..rn and s show the north
and south stars of the palr. The apparent declinations of the
stars were computed up to 0".001 (thousandth of a second of the
arc) by the following formula, where the correction for the
small amount of second class terms was also taken into con-
sideration:

‘ 4 ’ 7 ’ ”
J-; T Jf‘"z,&( f-AQ’ *Bb + C-C”-J-DQ/#A‘?&(?/. E’{(- %?5(7'&;,—55;7?&?_fw?d; /+ }

# AB sen? (2 cosa, - -éi- serZay . tand, )+ B sinf”(- 5 cos®ay. tondy) s |
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‘ vADsig 4 (si9'a,. secdy - % su7 ddy.siyby; +co S¢)4 BDS;“’IfT—{-S/V.?ﬂf—S‘é’(c;} f

E+ &? sy f"(—z,{ coga tand, -faye . styay cos 24y -Z}/ lory ey . senZd+

i
! +%smﬂq.uv2&] +

! ,
L+ CD sy /"(2—/ stplay, . taydy - “2{' stqlay . 5!']25{»1‘2{6!”?5{. cosc¥y + cos 5«5) 4

i

£ D%spmp 47, L (cos?my . siq28, — siqleg . o d, )

where ay, 8t are the mean positions at the closest beginning of
the Bessel year t, which is measured initropical centuries from
1950.0. < is the epoch of observation, measured in fropical
years from the closest beginning of the Bessel year t, and not
exceedling half the year. u' is the proper motion in declination
given in the star catalogue. a', b', ¢', d' are the constants of
the star 1n right ascension at the closest beglnning of the
Bessel year t.

et 1s the mean obliquilty of the ecliptic determined by the
Tormula:

& = RI28° 4489 ~ 467850 ~ 07003247 0 00sss L P

and m, n are computed by the relations already given in 4.2.1.

It is noted that we use the linear form of transformation
formulas appropriately reformed, because we are computing the
apparent positions of the same stars at specific instants, so

VAN

the values of a', b', ¢', d' will remain constant for all cases, and

only the computation of the respectilve Bessel numbers A, B, C, D
is. necessary. Among : these, C.and D were computed by the follow-
ing formula, instead of the values which are given by the astro-
nomiec ephemeris.

C=17189" 80 (~ ¥, ~y + Q0000553 )+ 0 0092t |

.
|

D~ 1189]60(- Ny -3 400002815 ) + 00028 £ |
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where x o3 y are the components of the veloeclty of the Sun refer-
ing to the %rue equator and to the equator of the date. . x, ¥
are the components of the center of gravity of the solar system.

It still remains to examine the reduction of the differences
in zenith dlstances, in order to apply the general formula. The
difference in zenith distances of a pair of stars i1s computed
by the formula:

,fﬁ%ﬂ5/2%ﬂ“55&75%4014*&W%ﬁﬁ%*ﬂQLﬂfW@@]+\

+ 1/2 (plane of correction) +

+ 1/2 . {spherical correction)

+ 1/2 (differential refraction)
where M 1s the mlcrometric constant, that is, the value of one
revolution of the micrometer in seconds of arc. This has to be

known in order to be able to measure the revolutions of the past
revolution in seconds of arc.

B is the temperature coefficlent of the micrometric constant.

Ttel is the temperature of the telescope.

R is the mean value of the bisected values in the unit of
micrometer revolution.

(IS) is the correction of progressive inequality (ascending):

of the micrometric knob.

(WI) is the correction for the inclination of the moving
eyeplece hair.

The 1ndicators E and W give the positions of the telescope

™~
=~
o

east or west. For the above magnitudes, we must note the following:

(1) The micrometric constant and the constant of the plane

are used for corrections in the full extension of the Annual Report.

These values were taken from the "Relazione sull'Attivita del

Servizio Internationale delle Latitudinl nel 1961, 1962" [Activity

Report of the International Latitude Service in 1961, 1962].
(2) The gradual ascending (progressive inequality) of

the micrometric knob is given in Table 6. There is no correc-
tion applied for periodic ascension.

34
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TABLE 5. CONSTANT OF THE INSTRUMENT.

Station Micrometer (half turn) Plane IPOSitioﬁiane T |
all Mizus@wer 197 9728 - 00030 JTee (°c) {320 1716 ?'-
::' Aifad 19 9173 « Olvoof? s g 369 ¢, 901
e wzleforie | 19,6358 — ' 1030 4,247
Cailhethurg | 19,8148 - g 00027 >, 1, 009 {035 |
N\ttheak 19,8808 -~ Qoooo4 4138 4057

TABLE 6. EXAMPLE (SAMPLE) OF THE ASCENDING OF THE
MICROMETER KNOB FOR MIZUSAWA AND GAITHERSBURG.

R Revolution e £ < 3 ¥ K & 7 8 4 -
2
Mizgesar - ~ g0z 50032 000203 400187 §ool4y Loos1z goops
Gacthestburg 00048  -q00% 29471 40167 40183 o215 Qo739

(3)

~40056 -0424

The spherical correction 1s computed for every star by

the formulsa:

z " J
(‘:—/2—,{ st 47 FZ 14275;4'

where F is the i1sometric distance of the measured point from the

meridian

in seconds. This is 2208 and 6 2/3, and they are taken

for all the numbers.

€D

computed

The correction for the differential diffraction was
for every star by the formula:
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where 60%".154 is the constant diffraction.

Tex is the temperature in degrees of a hundred degree scale
during the time of observation.

B is the atmospheric pressure in mmHg during the time of
observation reduced to 0°C.

Z 1s the mean zenlth distance of the palr which can be
replaced in the application by one half the difference of the
declinatlon at the beginning of the year.

A7 1s the difference in the observed zenith distances measured
in seconds of arc.

(5) The corrections for the inclinatlon of the eyepiece
hair (WI) were applied to every single value of the micrometric
reading as follows; only when they were separated, that 1s, when égg
we had different values, 1, 2, 3, 4 indlcate the sequence of
the values.

Bisecting (WI) Blsecting (WI)
/ 2 3, - -£ 74 { -, 3, - __2{(]2,4;[{]
4 2 - 4 ) -2, 3, - ~L(1,410)
4 -,3 4 -4 Iy b, ~, -, 4 -4 (I+]3) ]
- 23 4 -4 1, -2 -, 4 - (Lj+]5)
44, - -4 (13+74) - - 34 ey

The I, Tz, I3, Iy 1indicate the correctlons of every bisected
value in the reduced part of the star which are due to the ineclina-
tion of the moving eyeplece halr. Each of the I; values 1is
obtalned from the bisected values of the latitude observations,
which are obtained during the 3 'month perlod, and is given by
the following formula and used for the mean for the 3 months:
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o / /-’" . . ) . 7 N ¢ ) . !
e =?_[?jf;”m,/m?/myfﬁy)_jg;/ﬁ;j/vg’ {(U -czp) ] |

upper points: 1 = 1, 4 for Tel E, 1 = 2,3 of Tel w

lower points: 1 2, 3 for Tel E, i = 1,4 of Tel w

Ff‘:' Fq =203

where . ) ” ,
d?/—-[y =‘§f% /fx?uFi’zj Z’&’*fé”/- Jng=F5:(6§)g

where i = positions of bisecting 1-4.

numbers of the sequence of the observed stars 1 to n.

]

J

n total number of observations
Rij-Rpj = relative bisected value of a star J
(Ri)j = bisected value of a star J at position i

Cij = spherical correction in the unit of the micrometer turn
of the star J at the position i = 1 and equal to Chj

C23 = spherical correction in the unit of the mlecrometer turn
of the star j at the position i = 2 equal to C3j

M = mlcrometer constant

4.2.6. Specific Values for Each Pailr of Latitude Observa- /51
tions -

The individual values of the latitudes observed at Mizusawa,
Kitab, Carloforte, Gaithersburg and Ukiah were computed wlth the
method described, and it 1s shown in Table 7. In the same table

the mean monthly pair.values are also shown. In the table, the
numbers 19, 20, ... indicate the numbers of the star pairs of
the corresponding pair.

C4,2.7.  Zenith Distance Differernces

- The 1ndividual zenith distance differences were computed
by the formula (1/2)(Zg - Zn) = K + corrections (plane, spheri-
cal, refraction) and were summarized for every pair and every
station each month. '
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TABLE 7.
19

z, .
L Jay 8 39°8" 3677
1’
| g 3,327

3

£7

\Heay

3,377

20

3/588  3748¢

22 25

p— jZ'._-

5086 3,877

3298 3, 400

SAMPLE OF INDIVIDUAL VALUES OF THE OBSERVED
LATTTUDE.

€

Z6

e ¢

4020

3 804,

The monthly mean value of the zenith distance difference of

the palr and the mean value of
tion of the micrometer knob is

TABLE 8.

indicated in Table §.
1s given from Zg - Zy or R - Ry.

SAMPLE OF MEASURED ZENITH! DISTANCE DIFFER-

ENCES (IN MICROMETRIC TURNS}).

January 1962
/7
%
- 14,84

A

A

. ~ 14,65
G 14,26
/4

~-14928

38

ZJ

~
~18, 01

48, Zo
-18,03
~

-17 82

-17,63

24
4’,'2?0
470
548
537

5,39

Mean_ 25
4
Fe 7
-4 323" - 1844
-445 - 14,57
-804 -48 30
421 - 598
444 -4000

the group in the unit of revolu-
This table



4.2.8. Mean Latitude Values of a Group and Their Mean Epoch

The mean latitude value of a group was taken from the
monthly mean pain values which result from the individual
(specific) values of the latitudes as they are indicated in
Table 7. This derivation is shown in Table 9. The mean epoch
of the observations in 1 month was computed as the mean values
of the time of all observations and was measured in units of
tropical years from the beginning of the Bessel year. These
are 1lndicated in Table 9 with the mean latitude value of the
group and the number of observed star palrs. Note that the

"evening)" "morning" and "intermediate" values are indicated
separately.

TABLE 9. SAMPLE OF HOW TO FIND THEE MEAN EPOCH OF OBSER-
VATION, MEAN LATITUDE VALUE OF A GROUP AND NUMBER OF
OBSERVED PAIRS.

Aizeescawar (35° 87/ . i

@ (evening) ¢ (totermediaie) 7 (morning)
Bersseldian yewr & 7 Berreélray peat 7
: 1962, 047 3338 3% 1762, 0 6¢ 3390 32
, 452 37375 48 154 3,225
4233 3072 43 Z3¢
L 314 3,723 7

4.2.9. Mean Latitude Values of a Group Reduced to a Common /53
Epoch

Every latitude station has 12 mean epochs of observation in
a year. Each of them 1s very close to each mean date of the
programmed duration of the month, but among them they are different.
In order to compute the coordinates of the pole, 12 common epochs
were devised at the five I.L.S. stations, ag is shown in the first
column of Table 10. These were chosen so that they are very close
to each mean date of the month of observation, by dividing the
year Iinto 12 equal parts.

The common epochs are invented for every year by a rule.
The 0tTUT on January 21, 1965, was indicated as the first common
epoch in 1 year, and was given in undits of the tropical year ..
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measured from the beginning of the Bessel year. The mean

values of the latitude of a group and the mean epochs referred

to them are indicated in Table 9 and are reduced to the closest
commorn epochs by linear iInterpolation or extension between the
two successive mean latitudes of the same group. The mean
latitudes of a group in the mean epochs are indicated in Table 10.

TABLE 10. SAMPLE OF THE MEAN LATITUDE VALUE REDUCED
TO THE MEAN EPOCH (39°8!'),.

VBessedliary (CrOUD | Missecoy wer Ailo ko Carlofor le |Gaids e’:'zéz/a—g
reat . ¥ 7 # 27 L
|
¥ te)| 37342 35 4434 4 5883 87 |43°93% 78 '
/962,058 | Z(i)|33792 32 4625 ' 8 924 &1 | 43,467 75 l
. t
!
Z7 tmf| 3,418 35 \yzx ¢ 8747 57 | 43,254 76 ||
<
Z ez 377 45 1 500 47 geo8 P4 !l
/752, 439 | @329 3 |40 3 8753
)| 3270 23 1405 37

~
=

We summarize what was saild in the previous two chapters:

(1) With corrections, we obtain the individual latitude
values for every pair of each group at a defined date of the
corresponding epoch (magnitude as the month).

(2) From the individual latitude values we take the mean
values of each palr. Each group 1s already referred to one
mean value of the epoch (approximately equal to that of the month).

(3) From the mean values of each palr we obtain (again with
the average) the mean latitude value. The group is agaln referred
to the mean value of the epoch.

(4) We reduce the mean latitude value of each group,which is
referred to one mean value of the corresponding epoch, to the

corresponding common epoch, common for the five I.L.S. stations.
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We will apply the above together for Mizusawa, for the
pair of Group IV for the epoch January 8 - February 5.

INDIVIDUAL LATITUDE VALUFES.

24 -

{9 20 24 22 23
/.
Jay 8 - - - - - -~
| g {367y 3'"see 3189 3086 37672 2, 784
/3 13,327 - - -~ - - ;
2l - - _ . ; (
23 | 335 354 3456 2,94 - - (’
25 | - 3,929 ~ - 4276 _ |
27 | 3475 4499 3,010 - 3389 3312
29 2866 3357 - 3,632 3,594 2 900 /
30 |3,664 3,637 3429 354 - 2877 o
3 | - - - - - —~ j
/1 309 2 948 2,467 ¢ 3,315 2,513 2, 892 \<55
3| 363 - - - _ _
5 - - - - - -
Mean values 3.377, 3.600, 3.109, 3.298, 3.685, 2.952 of
each pair. .

value of the epoch 8/7 - 5/F =
+ 3.689 + 2.952] = 3",338,

Mean value of the latlitude of a group referred to the mean
(1/6)[3.377 + 3.600 + 3.109 + 3.298 +
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Therefore, for the mean value of the epoch, we obtaln,
for 1962, 3".338 (in the unit of the tropical year fromithe
beginning of the Bessel year. The beginning of the Besselian
year is when the sun has right ascension 280° near 1/1.) The
duration of the troplcal year is 366.242199 sidereal days and
365.242199 mean solar days.)

Already we can reduce to the mean epoch, 80 we will have:

1962.056 + 3.342 (for group IV)

Thils result 1s obtalned by linear interpolation of the
results:

1962.067 31,338
1962.152 3".375

Thus we find for the value 1962 - 3".342.
Note that when we refer to a certain:group, we refer to

evening, morning or intermediate, respectively, because each
group is observed at a special time of day.

That 1is, %‘WE;}'@*% ¢ B =P

so Instantaneous x,¢ corresponding to instantaneocus ¢ » xe = XxTV,

4.2.10. Determination of x,y and the Term %

'\
(9
L5

The coordinates of the instantanecus pole and the term Z
are computed with Pteference to the new system (1900-1905) of
the I.L.S. from the results of the five I.L.S. stations; theése
are indicated in Table 10. The mean latitude values of the
corresponding stations defined in the new system (1900-1905)
and the longitude values finally taken are:

j@?ffﬁﬂ 7 & (1900-1905)

|

Mezusotua , -14° 7 517 _ 392 8' 3402 }
Kiled - 88 32 54 | 1850
Carloforte - & /8 44 8 741
Gavlhestbuty - 77 # 57 13,202
y, . Hhah TS s 1209



The latitude difference A¢ at a statlon of longitude A 1s
~given by the formula:

' |
A= x corﬁ#élrtv/?fz

where x, y are the coordinates of the instantaneous pole and 7
1s the nonpolar variable. x,y and Z are computed separately for
the evening, morning and intermediate cobservations, by the
following usual formula, and the use of five different series
for the five stations:

where ¢ are the mean values of the latitude of the station, and
¢ are the instantaneous wvalues of the latitude of the station,
and 4¢ is given from the above formula. According to the above
formulas, 1f we take the five series and solve them, we will
obtain the following values:

X o d35940 ¢ (A7, + . F4E3A g, +./R32 0y -. 2583 g,
Y= ~26364%, - 31334y, ~ 0/724p, + 33824y, + 25594 g,

7o 230540, - Bo0Tdy, ‘{75507 «[8504y + 20814p, /

where the indices M, K, C, G, U refer to the five stations. That /57
means that it is enough teo find at aniinstant t the latitudes at

the five I.L.S. stations, to take the differences 4¢ = ¢ - & where

¢ are the mean coordinates of the stations and to form the

system of equations:

Apy = EXCOSAy + ysinrjy + Z

Then we solve this system of equations with the least squares
method and compute the values of x,y and Z at the moment £. The
values of x,y and Z were computed for every month, as is indi-
cated in Table 11, where the indices e, 1 and m are  mean
positions for the evening, morning, and Intermediate, correspond-
ingly to the values of the latitudes in Table 10.

Thus, after elaboration, we obtain the Xpean, Ypegn values

as 1s indicated 1n Table 11, so we can get the values of the
polar coordinates for every 0¥.05. Alsc, we can obtailn the
~graph of the values of the coordinates. Numerically this is
indicated in Table 12.
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The barocentric value of the years 1900-1905 is taken as
the original point. The coordinates of the barocentric value
of the orblt of the pole referred to the new system 1900-1905
were computed from the components of the pole over 6 years,
from 1957-1961 and 1962 for the mean value of the date 1960.
Their wvalues are:

x = 0".063 y - 0".205

-Below we will glve a sample of the two tables 11 and 12.
In Table 11 are the values of x, y and Z which are computed
from the mean latifude values and the instantaneous ones, which
we fTook finally from Table 10. Table 12 has the mean values of
X, y for a portion of the year equal to 0¥.05.

We will attempt a solution of the system A¢1:= xcosry + ysini4.
using the method of least squares. /58

Apy = Xcosiy + ysinds where i = 1, 2, ... 5 show the filve

stations. The system is of the form aix + by - 13 = 0.

We form the table:

|z A &r afi | ciar | bibs N as 4 B &r J
;; cos# | sin% | 4@ lcosis in% c.o's' 27 | sin's, Jﬁ,coé% dps ing, ||
| cos | sina Jgy  [oszsing |cosisz |sing, Sy €082 A sing,
E,’ cos7 | sin ' Ay lcosZsing kos %4, |sin?s; Ay 08T | g, Sin '(
: cos | siny 4@, cosZsing [cos 27, [siwyy, 4,08 ¥ 25, singy, {

1

| cos<r | singy | Jpe |cosdsiudcos % Isingds JyLosid | Jpsing

i
' Lt/ \faal \[88] | fws) | /8E] &

(1)

- B ¢ 5 I
5 . . . . . J

cos*Zy x+2?{ sin7y cos7; yzz':zi Ay, cos,?,l |
(2

N

s
I

Y, s P |
2 sinPfcos i x fﬁ.g# sin iz'g =z_,z; A’?gz.s?n.'./gz. \

&={ =

by



The system of equations (1), (2) will be solved by the

method of determinants.

I it is
] |
= . 2 Ps Zy ‘Al
Aix+biy = 1% &‘ “ 7
& Xt fref = 2 = e a4y ) I . .»’s’;l ‘s\
7 &e  pa o f \
Then
24 ¢,‘cos%' LinFicos?, Jcos 277 ZAgcos . 7;

Ldpisingde L sin‘a/‘?z'

Binficos ZApisinFi

J costr %in%b’-osﬁz' T cos®As Isinzycos 71

Isinfecsd 2 sif?i Jsinfecosdy Zsirtps

We wlll compute the determinant of the denominator:

Zcos 27, Zsin77 cos 2|

5 .

sinFwcos A, ZHini7: =t

'f »
2 sin
M=y

-

5
%/~ 275 sin%cos Z/sinZe cos 4

E2
=2 cos 27
Sy &=

=t
;-5/--'-,4/ wsin) ¢ 7 sintgy
Y cos/5in COS A4 sy ; _ gj/&ﬁ ey

A
S S K

We will compute the determinant of the numbers:

— e —— T e ———

/59

. 5 5 £ _ . l
=  cos.Zysinzg, :«,‘Zf cos 2y (“i‘; sln“k/—éz; cos 27 sine 7, —|
& z__ = 4/'
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Ldy,; cos B JsinFcos k

s_,zf Ay, cos}?g'sin-?,?}'.»_.?é- Ag;cos 7 (;551112/2,) .-\,
Ay sin 7y 2sin?Ay £=f i i f
53
.2; sin%7r dy; cosz?z—-f A;psm ,9:(2'5111,?’ cosgjj/
i=
} here_‘ g‘ _7_::'/ f

B ‘ s s '
= .Z zfﬁ cos 77 (.2- S:Ln /'-—2'5 ‘dfa; Sinﬁl'i{Sin.glcos /?J) _

=3 . . L. 5
< Adgsin g, (cosFsing; —sin Zycos 7/} 4 2; dﬂsm ﬂ:osfl}s:m; "sm/@cosZ//+

i 5 § Ay, sing, sin (77 - Qg/
.J%S <£/ P4
44 ’{

In the same manner, if we work for the determinant of the
nominator of y:

Seos Z7; Zdgp,cos T 2
| - £ A gy <05 77 sin (7 - 7;)

Jsingjcosy) Eﬁyz-si’nﬁé z j=4
’ S >L

From the above solution, we observe that the values of x, y
will be first degree functions of the values of A¢j3, which are the
differences between the mean and instantaneous coordinates of
the latitude ¢ of the place of observation.

Generally, the system can be solved with the same method if
we take five equations with three unknowns, if the computation of /60
Kimura's term is needed. In the same manner, we make wa. table T
of the ceoefficients of the unknown quantities of the observation
equatlons so that we willl obtain the normal equations:
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" leos g/ » [ cosj'z'sin/’i’z']‘z’f ¢ FeosPilz = los Fidy:l
[eos 7y singy [y 4 [singfz']v?/ + Lsingilz = [sinFidy ]
[cosFiJx + [sinde]y + 5z = [ dp7

the solution of which will give the values of X, ¥, 2.

In this case, we do not have the normality of the previous
formulas, and the formulas are rather complicated.

The declination corrections of a palr of stars are expressed
in two parts. The first is called the "eorrection of the mean
value of the group" and the second "correction of the group."

These can be defined at the same time as the error of the
proper motion from the results of the latitude cbservations when
weé have enough information from many years.

At the present time, however, the information available 1is
S0 poor that the error due to proper motion is lgnored.

(I) Correction of the Mean Value of the Group

It could be considered as the best method of defining the
correction of the mean value of a group to use only the results
of all the evening observations, when all pairs which belong
to the same group are observed. The difference between the
value of the latitude for every separate pair and the mean value /61
of all the pairs which belong to a group will give the "correc- -
tion of the mean value of a group."

At a few statlons like Mizusawa, the weather conditions are
so unstable that full observations in one night are rare. The
follewing method is the one used by almost all the stations.

At first, the monthly mean values of latitude are defined
for each pair as:

@.ZJD:%Z;@Z‘_

where ¢itg is the monthly mean value of the latitude of the pair
i at the mean epoch tg.

$1t 1s the individual latitude of the pair i at the epoch ¢t
of a month.

47



ok nj is the number of observations 1n one month for the pair i.

These are given for every month on the last line of Table
7. After these, the mean value of the latitude of g group is
computed by computing the $3t, which belongs to the same group.

ﬁ%z"a:gﬁz%-{a r L

(1/6 because each group has six pairs) . where ¢ty is the mean
value of the latitude of a group, more specifically, of the group
k at the mean epoch ty where the 1 palr belongs. These are

glven in Table 9. (All the above are deseribed in detail in
Section 4.2.9, where a numerical example is also given.) Then

the correction for the mean value of a group of the i pair will be:

7= %2’0 - éﬁfﬁa

The individual values of r; for the evening, intermediate,
and morning observations are indicated in Table 13, along with /62
the number of observations for every month n, the mean epoch tg,
and the mean latitude value ¢nt,. The mean value of ry for
every palr is written on the last line of the column for every
pair. It should be noted that the difference between Tables 10
and 13 1s that . according to Table 10 we have reduced in a
common epoch, while according to Table 13, we are in mean epochs.

L Gyetis — s -

TABLE 13. SAMPLE OF CORRECTIONS OF THE MEAN VALUES OF
A GROUP.
Unit u = 0".001.

T _ / /P air? = 2
' J ¢Grouy > 2, 7 27 7 27
| Mo A2, TES .@?57 -353 1O | —-782 /7 | 233 v
Evening
(oct) K 8¢ 1887 -375 A9 ~32F g | zs59 g

1942, 733 3549 |40z 7 |-72

Intermed.
‘I/feééf A 728 {685 -#? /S
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correction of declination which 1s applied to a group.
Z values for every group and every epoch, in the year 1962,

The table is done for all the groups.

Each value of Z (Kimura) is defined from the flve I.L.S.
stations together, and it 1s assumed to consist of the error
of declination of the group which is observed as morning, inter-
mediate, or evening group, repeatedly during 3 successive months.
In other words, the (-Z) can be considered as the preliminary

The

which are given in Table 11, are arranged again, and thelr sign

changes as 1s indicated 4n the upper half of Table 1k.
preliminary corrections of a group were taken, as is indicated

The

in the column "Mean (-Z)" in the lower half of the same table. /6
The individual values of (-Z) for the years 1960, 1961 were
taken from the "Relazione" by G. Ceechln.
TABLE 14.1. TABLE OF THE -7 VALUES FOR THE YEAR 1962.
c l (ef 1./ "’7/ - LAy
& : .
Grroup € Z 277 A€ cry 2 Z 37
(22 oe9 | oes o0 P 20 “p7% ~ 2oz 1026
\Z | %923 | o008 - 003 - J05 028 - %003 ~oz5
Mean ' ,g . L34 .A78 A3 .o .2af =275
TABLE 14.2. SAMPLE OF THE CORRECTION OF 4 GROUP.
. /g60. 7964 1967 A ean
6r| e ¢ . e i e Z # (-2)
Group
I G70 D48 lpz3 | 'pas  w3s ozs |.Dup  HE  ~bos %057
Z 009 020 19 | o ooz -lowr |.B23 50 730 “vo4
Mean /59 . 743 440 | 447 /38 48 | .m4e 34 ArF | 738
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(IIT) Correctlon of the Declination for Every Pair

Initially, the correction of declination for every pair

was carrled out by adding the two above corrections (see
Table 15).

TABLE 15. SAMPLE OF CORRECTION OF THE DECLINATION
FOR EVERY PAIR.

Group " Pair - ‘!Fr
Ve £ 238
i
\
< -~ 007 \
¢ 215
4.2.12. ILatitude Corrected of Error of Declination and 64

Remainling Latitudes

Every latitude observation which is given in Table 7 includes
the error of declination for the five I.L.S. stations and the

values 1n Table 15 were adopted as preliminary corrections of
declination.

The monthly mean values of latitude were derived as arith-
metic means ©f the corresponding mean epochs, from the indili-
vidual means of latitude corrected for error of declination (see
4.2.9). These are indicated numerically #n Table 16 and on the
graph of the figure. On the other hand, the normal latitudes
of epochs corresponding to the mean epochs for the relevant
statlions were computed by the formula:

.afqaz1=ﬂ{f415v57?+j/”ﬂ¢2? |

where &, X are the mean latitude and longitude values of the
statlon and x,y are the coordinates of the pole for the epoch
obtained by the calculation formula (Chapter 4.2.10). These

are glven in the same table. The differences between these
two are given 1in Table 16.
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TABLE 16. SAMPLE OF HOW TO FIND THE RESIDUALS
' FOR MIZUSAWA,

TBessel Year |@cor | Pwor | Kes \

i
1962, 058 | 373715] 3/ 395 |~q120 |

A9 | 3922\ 3,370 gosz!

237 |3/377| 3 2959 |~9o32

|

1

= latitudes corrected for error of declinatiocn
%oz:d#— A“'COJ‘Z*J/I{?}.‘ '

Res = residuals

¢COI‘

(That is, the latitudes reduced from the mean values ¢ and the
corrected ones derive the differences Res.)

L,2.13. Final Summation

The differences between two successive mean values of the
latitudes of a group for every station, for each month of 1962,
were derived from the mean values of the latitude of a group in
Table 10.

These are indicated 1in columns e-1i, i-m of Takle 17. The
summation for every 12 values in columns e-1 or i-m gives the
final summatlon of these sequences. The mean value from the
final two summations for each station isvglven on the last line.
The last column, indicated as Mean, glves the mean values as a set.

Summarizing the previous chapters, we can say that we obtaln
a second order approximation of the latitude wvalues. This means
that we will obtain the ¢por (mean) from the already known values
of the polar coordinates x,y and the nconpolar term. However, if
the % values are arranged and 1f we apply the corrections agailn
with the new values, we will obfain the new ¢poopr (correction)
values.
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Ay

Month Mzusgaxtear Hela b f

| 1962 | ¢-7 Z-m | e-7 7 ¢-2 _ Z-77|!

Jan. | -d52 256 | - 187 L300 | --- SR ~ f

Feb, | . /50 —o48 | 144 037 | - | - - |

' |

Mar. | _ gg¢ - OR] | -061 of7 ce ] - ~ !

) |

Total |= /0€ 2ty | ~faos  yse e

A R =" (79 -787% |

A : : 4

¥Mean values of the neighboring values.

b.2.14. Corrections of a Group with the Chain Method /66

The "correction of a group" for each group was assumed to
be made up of two parts (4.2.11). The first part is the correc-
tion due to the error of declination of a group and the second
part 1s the correction due to the nonpolar variable of latiltude
which (variable) is the same in the five I.L.S. statlons. It
1s not always necessary to distingulsh them for the purpose of
defining the polar coordinates from the five I.L.S. stations.

At any rate, it would be important (very useful) to define
the exact value of the correction for declination when the
results of the five I1.L.S. stations are combined with the ones
of the independent stations, where we observe the various stars
or the pair of stars using different methods and instruments.
It will also be important to see the results of research on the
nonpolar variable of the latitude.

In this paper, the results of the chain method, in which the
final result is distributed equally among the combinations of
the group and the whole summation of the errors of declination
for the mean values of the group were assumed to be equal to zero.

The error of proper motion was not considered either. -The
results are indicated in Table 18, where the mean values of
the corrections of a group are shown which are taken for the
corresponding stations (the five I.L.S. stations).
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The corrections of the group by the chain method were
compared with the ones by the (-2) and the differences between
them, of an almost yearly change by 0".03 1n arithmetic value,
are indicated in the same table.

TABLE 18. SAMPLE OF CORRECTION OF A GROUP BY THE /67
CHAIN METHOD.
_Group 45 -2 Differenée
7 #” i \(
v 013 137 - {24 !
y/4 A97 375 -8 ‘
7r | 090 195 - 105 |

4.2.15. Checking of Latitude

The checked latitude ¢ig of station 1 for group g was pro-
posed by Wm. Markowith. Thls is computed by the formula:

. . L
Hy = Loe-fip
f 5y |
#p J

where ¢3p are the monthly mean values of Zatltude observed at
station for the pair p, given in Table 7. Wp ls the weight
which is given to the palr p and is considered as Wp or Wg for
every north or south pair.

The welght Wp is computed by o with consideration of W or Wg-

W, = _I(Z.D.)s
-W‘g (EfZ.D.jn

where IZ(Z.D.)g and I{(Z.D.)n are the summations of the zenith dis-
tances of north or south palrs of stars of one group on which
they can be computed for the mean epoch of the observation.
Then the barocentric zenith distance of the group disappears.
The checked mean latitudes of a group are computed for

every station as 1 s indicated in Table 19 from the numbers of
observations and the means of the epochs. The results are reduced
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to the common epoch (see Table 20). The polar coordinates for

the checked latitude are computed by formula 14 (Table 21, upper
half), where the index ¢ indicates the results from the checked
latitude. The lower half of Table 21 gives the comparison

between the results of the checked latitude and those of the usual
latitude (Table 10). Their difference 1s very small, but it /68
becomes 0".008 or 0".009 when the zenith distance of the group
becomes large. This introduces the existerice of a small error

in the accepted smaller value.

TABLE 19, SAMPLE OF MEAN VALUE OF CHECKXED LATITUDE
. AND MEAN EFOCH OF A GROUP.
Mizusawa Epoch
g . - - ‘
. 7 | — |

' Bessel Year @ 77 . Bessel Year & 7 Bessel Year ¢ (

1962, 087 37339 3s 7762.06¢ 3399 32 |1967.071 3732 35 {

4 377 48 ASY 27z F6 A3 25 23

-233 089 £ 218 A70 47 [ 230 A7E ;'39 \

TABLE 20. SAMPLE OF MEAN VALUE OF CHECKED LATITUDE
OF A GROUP AT A MEAN EPOCH (SEE TABLE 10).

N Wezzesawa(a1° 8 Hibab (397 8°)
f"Bessel 1
Year ST |y » | & 47
7 |3342 35 | 4"95% 7
/967. 55 | T | 3% 32 124 £
zZ A8 35 2éo &
TABLE 21.
. Upper half

Lower half
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It is important to note that thé‘formula which gives the
welght for the values of the difference of a group has c¢hanged.
It is: ‘

7
,;ZL__—-
w=7 ot 7z

where njy, np are the numbers of observations of two successive ‘
(palrs) of a group. AN

~
h

4,3, - Chapter 2. Results of the Latitude Observations at the
" Independent Statlons in 1962

At the present time, 32 stations, five of which are I.L.S.
stations, are cooperating with the IPMS. Among them are 22
stations and two I.L.S., Mizusawa and Kitab, which are working
independently . oh » latltude observations with 27 instruments,
and 18 stations doing time observations only, or doing them
with latitude observations. These stations worked independently
according to their own programs, and they applied relevant
methods for correction of declination. Therefore, it is possible
that there exist certain disagreements between the mean daily
values of a few stations and the ones of the IPMS. For these
stations too we work by using the methods mentioned before,
that 1s, we compute dally or weekly mean latitude values and then
monthly mean values for the mean epoch. The difference 1s that
in this case we take into consideration the welght of the number
of observations. Another difference is also that for certain
instruments (VZT, FZT), the mean epoch is not measured from the
beginning of the Besselian year in units of tropical years, but
is taken as the centrovaric mean value of the astronomic data for
every observatilon.

The remaining latltudes are computed as the differences of
the monthly mean values of the observed latlitudes and the normal
latitudes at the opposite mean epoch wlth reference to the polar
coordinates which are determined from the five I.L.S8. stations in
the new system 1900-1905. The normal latitudes are computed
from the formula:

Byor = P+ A'ca:}hoz/szyﬁ_'-

Since the mean latitudes were accepted at the beginning at
the Central Office independently from the 1900~1905 system,
certain corrections have to be applied.

55



4.4, Observations /70

In Chapters 4.2 and 4.3 we saw analytically the corrections
which we apply to the observed data and we also saw how we
obtain the final values for the five I.L.S. stations and for
the independent statlons. Summarizing the above, we can separate
them as follows:

1. We choose a star catalogue which we can use, and we
compute the mean cocordinates o, 8¢ for an epoch according to
the known data. Then we examine the atmospheric terms which
have to be taken into consideration.

2. We give the known formula of reduction:

@= "5:‘/‘ (z;-2,) +.—;- (ds+F5)

and we compute the apparent declination § (making detailed computa-
tions), and we should thus obtain §p after the computation of
(1/2)(Zg - Zn), taking the various correctlons into consideration
(plan. sph. refraction) (Table 8). We can find the individual
values of latitude now by applying the above formula. From

these (a numerical example 1s also given), we find the mean

values for each pair, and then for each group (as average mean)

for a mean epoch. After thls, we reduce our results to a common
epoch.

3. By the least squares method, we combute the polar coordi-
nates %, ¥y and the term Z.

4, Finally, we apply another correction to the declinations
for two errors, and we define the ¢oop, dnor and the checked ...
or centrovarle latitude of the stations. ?This is because
earlier the difference 1n zenith distances was corrected, and
only the declination was not totally corrected:)

5. We refer to the 1lndependent stations.

In order to assume the study of the corrections to be com-.. /T1
plete, the Annual Reports for the years 1963, 64, 65, 66, 67, 68 T
were lnvestigated. The description of the methods was published
in the Annual Report of 1962-63. As for the rest, we did not
find any differences in methods,and in the Annual Reports for
the years 1966, 1967 the new CIO system was used. We alsoc see that
the number of independent stations continues to increase, as
well as the variety of instruments of observatlon.
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Before we finish this chapter on the detailed discussion
of the methods of correction and reduction of the observations,
we will glve as an example the coordinates of the centrovaric
term of the orbits described by the pole.

/957 1963 /964 1985 196€ (cro) 1967 (ci0) 1768 (cro) i

- Abax | 27063 07057 prose IVody 9r03? 07039 i

{
1

:‘= Yrar 0205 9203 Q205 0724/ 0222 o725 ;

In the errors which follow,the orbit: of the pole is given
during the various years in the new system 1900-1905 and in
the CIO system. Various graphs of the relative corrections and
the positions of the observatories in the ¢, A system are also
given.

Also, for comparison, tables will be glven which show the
mean values of the polar coordinates and the mean values of 7
for the mean latitude of a group and the checked latitude.

For the mean latlitude of a group, the polar coordinates
will be given for an increase of 0.05 year.

Also, for comparison of the values which are given by the /72
"Monthly Notes of the International Polar Motion Service" and
the ones of the "Annual 'Report," we glve the new polar coordinates
for 0".05 for 1962,
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65

X,y COORDINATES FOR THE MEAN LATITUDE OF A GROUP.

1952 /963 1964 965 1986 1967
036 i . 3 f- 124 34 f -"212 %5 | - ors 0w 043 2 | o 217
139 024 - 289 - 087 363 | - 160 29¢ | - {8 /33 003 100 ovg 16¢
.222 032 289 - 025 377 - (3¢ 385 - 182 w052 ‘foz 0% 44
..306 /8 263 ors 389 - QL& 475 - fou Jo -098 73 ofo 1841
383 | 131 o3¢ 180 358 046 450 | - 13 394 130 22 | -3 130
432 161 156 »7 25 199 429 | - 0us 448 -098 257 019 163
236 {64 ogr Jou 8 - fay .328- 083 &r -0%9 Sy 06y 7¢
£33 101 o5y 253 106 253 223 158 58 ~024 339 018 '202
722 04k 084 147 026 260 153 212 2832 035 326 003 | 206
806 - ozt foz 04r - 028 220 074 225 4y {26 308 -030 228
88y | -2 149 - 054 oys 097 v | er 178 121 23 | -068  2%s
972 -~ 18 g - M 083 079 Oko o8t - {0y 110 T -663 - 37
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Xe,¥e COORDINATES FOR THE CHECKED LATITUDE.

7363

1962 T Tioe3 1964 B
055! 017 33¢ ,r - 123 317 | - 247 16¢ ~08f - 063
-/591 02/ 250 ’ -09¢f 345 | -184 289 -176 /23
292% 089 291 I - 025 ast ! -140 367 198 248
306; 115 25 ] 075 390 -~ 06! 436 -207. 332
339% 168 213 i 80 361 % ‘093 449 - 142 363
43?! 63 153 % 237 ; 284 1 20f 428 - 04/ 41
556‘ 167 o0 | 307 177 1 253 . 3y o9y s
639 | 104 035 26/ w5 | 250 238 164" 579
3221 043 079 %2 032 93¢ 165 221 292
805 | - 47 09% 653 -030 2 09r 241 - 238
889, - 77 140 -04? U 093 0ro 236 {73
912| 147 217 148 289 033 o¢r | 063 107

I
004 e Xo -k ¢ ,004

2008 ¢ ¢ -y <003 j

042

-0037

-{a9

-{t7

~132

- 0%

| =09

- 01t
044
137
40

110

1966 _

116

08s

03

by
209

259

350 .

346

34
31#
258

249

078
062
~0o%
- 036
~004
023
060
024
0f2
- 03¢
- 0%

-063%

1947 _
228
76
53
190
111
158
166

193
19%
219
23¢

308

~
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Orbit of the pole (1962-1964).

A "wobble" is observed in the orbit.
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KIMURA TERMS Z.

Group 1962 1963

1964 1965 | 1966 1967

z Ze -
4| -0%0 -"ore - 132 -p35 § —122 00t | 95 003 | -113 -008 | -26% -083
5 005 ooy - 066 gog | 133 oS -07% 025 I - 095 ﬂ‘fs_ - {9¢ 79
¢ ’ 204 -0 | -104 s o2 200 - -082 -248 | - 080 -248 | -096 - 276
7 1‘ - 149 ~ 143 }+035 ~128 32 - 151 ;+ow -3 B oS -39 | 039 | 1ty
8 149 -757 E-/gz | - 185 | 75 -19¢ ;_,,” =165 | -148 =202 | -188 -0%
o | oz o | -0 006 | -253 009 E-sea o | -227 on | -38 -0t
0 ‘ - 185 - 193 f -029 89 048 -2 . - 003 12 o -8l om -207
ft -232 -216 } -f22 -2r5 -ff3 -aog E -137 -1%0 -13 -3 i ~08¢ =361
1 -005 016 -334 o ;-30_9 063 § =318 | 013 - 3v6 118 ~ 125 | (1]
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5. METHODS OF OBSERVATION

|

As we already mentioned, two instruments have been used up
to now for all the observations.

These were the zenith telescope of Talcott and the lmpersonal
astrolabe of Danjon, which introduced two different methods of
observation. It 1s interesting to mentilon that the development
of the methods of correction and reduction :..u .p to now has
been based on the method of observation of Horrebow-Talcott,
with Talcott's zenith telescope.

At any rate, the instruments have been changed. Thus, for
example, the photographic zenith telescope (PZT) was developed
from the zenith telescope.

In what "fiollows, we will refer briefly to the instruments
and the methods of observation.

5.1. Determination of Latitude by the Horrebow-Talcott Method.
Zenith Telescope

The Horrebow-Talcott method is one of the most accurate
methods for determining latitude, and for this reason it is
also used for the determination of 1lts periocdic changes.

According to this method, the determinhation of ¢ is achieved
by cbhservatilon of the zenith distances of two stars at their
culmination within a small period of time, the one north and the
other south of the zenlth and approximately at the same helght.

A8 dis known, the formula of computation is:

;9:j£(d%+f£):/ﬁzv-23)F

According to the Horrebow~Talcotf method, the measurement of the
difference in zenith distances is made only with micrometric
motions, and thus the observatlons are free from errors which
occur because of the use of arithmetie circles.

For the determination of the difference Zp - Zg, a special /17
instrument 1is used which 1s called the zenith telescope. This
instrument consists of an astronomic tube, of which the eyepiece
system has a horizontal moving thread parallel to the axis of
rotation, and five other threads perpendicular to the first cne.

The moving thread can change position parallel to itself by a
micrometer knob.
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The tube can rotate freely around a horlzontal axis which
1s supported on a base fixed on the vertical axis. On the tube
is the arithmetic ecircle, parallel to the optical axis. The
inclination of the tube with respect to the horizontal plane
is measured with the use of a vernier which 1s on the arithmetic
cirecle, and with a very sensitive bubble which can be rotated
around its center and can be settled on a fixed position. In
order to use the instrument, 1ts main axis 1s set vertical and
then it is oriented. In order to cbserve with this instrument,
we take a map of the celestial sphere and a star catalogue and
choose a pair of stars which culmlinate within a small period of
time (5-10 min) and with such zenith distances that the difference
Z1 ~ Z» will always be smaller than the half-diameter of the
optical plane of the tube. The sbars are chosen so that their
zenith distances are as small as possible, and never more than
30°. In this way, we perform a catalogue of palrs of stars to
be observed 1n the sequence in which they culminate. These
catalogues have already been arranged, and the one used by the
IPMS is by Boss.

In order to observe a pair, we set the zero of the verniler
of the bubble in the division of the circle which corresponds
to the mean value of the zenith distances (Z1 + Zp)/2 = (8o + 871)/2.
Then we turn the tube up to the point where the bubble takes the /78
normal pcsition. When the first star appears in the optical
plane of the telescope tube, we bisect it with the moving thread
and follow it up to the moment that i crosses the meridlan, which
is the central vertical thread. Then we take.the reading of the
cirele and the chronometer indications, and the ends of the bubble.
Next the observation of the second star of!'the pair follows, .y
which is done in the same manner, the only difference being that
before this observation the telescope tube is rcotated around the
vertical axis 180°.

If we call Ap the reading of the center of the bubble when
the optical axis 1s vertical, a the angular value of the bubble
deviation of the circle level, my the reading of the micrometer
knob when the moving thread is on the optical axis, and K the
value of the pace of the mlcrometer kncb, and if we assume that
the dlvisions of the level ¢irele increase from one end to the
other, then we will cobtailn:

Zy= Lo -t"f‘h"/oy‘,*'??;)—*—'d (7 -7+ E,i

where Zg is the zenith distance of the point of intersection of
the celestial sphere (of the star) with the optical axis of the
telescope when the reading of the center of the bubble is Ap.
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R1 1s the. correction for dihffraction, and it is (+) or (-) if
the starting position of the division of the level bubble is
on the side of the eyepiece or objective lens of the telescope.

For the other star of the pailr, we will have:

La2=lo f”(Wa-WZ)rd(QZ"‘?D)*AZ \
Thus  Zy-Zp = K (wa-m, )+ Q (3-F2) +R,~Ra |

In the application by the IPMS, the formula is much more
complicated, and it takes various factors into consideration,
such as the temperature, the inclination of the c¢ross thread,
and others. It also considers other correctlons suchias.plane
and spherical, as has already been discussed.

In order to elimlnate errors of the level, Cookson invented
the floating zenlth telescope. It 1s an instrument that has the
base of the horizontal axls of rotation of the telescope tube
floating in a basin containing mercury. In that way, the
rotatlon of the instrument takes place arocund a direct vertical
axis, and the rotational axis of the telescope is always hori-
zontal. Finally, the zenith photographic tube (PZT) is used;
its horizontal plane is substituted by a stable basin of mercury.
The image of the .star is reflected (by the Hg) on a photographic
plate which rotates around a vertical axis. Many exposures are
taken of the star. A special device called a "measurement device"
is used for the measurements.

b.2. Prismatic Astrolabe - Impersonal Astrolabe of Danjon

The prismatic astrolabe i1s an instrument invented by Dlaude
and Driencourt. The principle on which it is based is the
following. Suppose we have an equilateral prism of which one
side 1s vertical and all the edges of this side are vertical.

This prism 1s set on a mercury surface which is contained in a
mercury basin stably connected with the prism. The rays of a

star are partly reflected by the mercury surface and partly
diffracted through the prism. PFrom the figure, we will find

that 1f the ray LH 1s perpendicular on the edge of the equilateral
prism BA, then Ie will form a 60° angle. The ray which is
reflected by the mercury surface is also diffracted through the
prism and then 1t (total ray) intersects IH.at a point E on the
interior surface of the lens, after passing through a concen-
trating lens. With the change in =zenlth distance of the stars,
the focal length of their images changes, and when the zenith
disfance becomes larger, the focal length becomes smaller, and
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vice versa. We see that the angle K is 120° because .  AAjA
can be inscribed in a circle, and the angle A is equal to 60°
Thus,: thehzenith distance will be 30°., This is the important
result which is basic for the instrument, that is if and only
1f the two images of the ray refleécted by the mercury surface

and the ray diffracted through thepprism colinclde, then the
zenith distance of the star is 30°.

2K

In order to make observations with an astroclabe, it must be
callibrated before the start of the procedure. We must:

1. Set up the azimuth circle horizontally, with the ald of

the level circle which is on the telescope tube, and othe
horizontal clamp.

2. Set the optical axis of the telescope horizeontal. This
axis is perpendicular to the rotational axis of the instrument,
so we can simply set the second axis vertical.

3. Set the edges of the prism horizontal. In order to do
this, we must take out the telescope eyepiece and then observe
the image of a vertlcal thread which we hold ' in front of the front /81
edge of the prism of the astrolabe. If the edge is not horizontal,
then its image will not be a.straight line but a broken one. In

this case, we correct with a special knob until we see the image
as a stralght line.

4. 8et the rear side of the prism vertical, that is, per-
pendicular to the optical axis of the telescope by means of
self-orientation. In this case, observing through the telescope,
we attempt, by using three adjusting screws of the prism, to set
the threads of the cross on their image which i1s the result of
the reflection by the rear side of the prism. In this case, we
use the eyeplece system which has a prism of total reflection,

called the self-oriented eyepiece (Bohnenberger prism). This is
always found with the instrument.

5. PFilnally, we must orlient the azimuth circle of the
instrument. In order to do this, we rotate the telescope so
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that its optical axis becomes parallel to the direction of

the magnetic needle which is attached to it, and which is cor-
rected by a value of the magnetic decllnation due to daily
periodiec and irregular changes. Then we keep the telescope
tube immovable and rotate the azimuth circle until the zero

of this circle coincides with the zero index of a vernier which
is attached to the telescope. Then the zero reading of the
clrcle corresponds to the beginning of the azimuth measurements.
This way, we have an approximate orientation sufficient for our
observations.

~  The only source of undesirable errors is the case of a
nonhorizontal optical axis of the telescope which must be taken
into consideration. The other conditions we referred to can
elther be fully satlsfled, or can give very small errors.

B
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In order to observe stars having equal altitudes using
this instrument, we must prepare the catalogue of these stars,
as is known. This catalogue contains the stars in sequence
of their succession from an altitude of 60°, the sidereal
times of the corresponding successions and their azimuths. The
time Interval between two successive observations is on the
order of 2-3 min, and it varies according to the experlence of
the observer. ‘

When we set the two images of the star in the optical plane
of the telescope, we rotate by the azimuth, so that their coinci-
dence will occur within the parallelogram of the threads. (in
order to have zenlith distance error less than 0".1). At the
moment of colncidence, we note the time with our chronometer,
and we prepare the instrument for the next observation. The
observations are quick and easily done. We must also take the
temperature and pressure readings for the computatlion of the
difference in correction of the diffraction. It is important to
mention that Just slightly before the coincidence of the thread
we must keep the telescope absolutely immobile, so that we do.not
disturb the surface and make the image by reflectien disappear.

The astrolabe has many advantages and disadvantages. The
blggest disadvantage 1s that we can not use the impersonal
mlcrometer in observations made with it. If we could, then our
observations would be absolutely free of the personal equation
of the observer. Research already done to solve this problem
has not given any results. Usually, we try to find the personal
equation by using a device; however, this method is not successful. /83

Because of the stability of the mercury surface, we can

make long series of observations. However, because of changes
in atmospheric conditions which cause changes in diffraction,
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the duration of the program of observations should not exceed
2 hours. The altitude o f. ohservation is constant, because
it depends on the angle of the prism.

Another blg dilsadvantage is the change in the mercury
surface caused by the wind or by vibrations, which results in
the introductlon of errors. Also, just because we have only
one coincidence of a star, we are not able to make many obser-
vations. For this reason, we are forced to observe many stars
(more than 40). Given that the random error of each observa-
fion is quite large, we have to eliminate the errors by the
least squares method of solutilon.

The typical instrument described above has already changed.
The major change was made by Danjon, who invented the impersonal
astrolabe. This is a fixed instrument, because of its weight
of 180 kg, and it is used. only in observatorles The principle
of this instrument 1s the following. In the path of the two
rays which come through the prism, and close toc the point of
coincidence, we put a double Wollaston prism of double symmetry.
This prism splits the light rays in such a manner that the angle
of the split rays which come from the same bundle. remains the
same. Obviously, we will have four bundles of which two will
be more convergent thah the other two. The two diverging bundles
of rays are not taken into consideration. At the moment of
colncidence of the two images of the astrolabe which are produced /84
from the converging bundles (they converge more if the prism is
closer 3 change of the position of the prism), if the surface of
the prism on which we observe the duplication of the rays passes
through the point of image coincidence, the coincidence is
maintalned. Given that the angle of the two converging bundles
is changing because of the motion of the star we observe,.we
can maintain the coinelildence of the two internal images by dils-
placing the prism by a micrometric knob. This knob carries
electrical contacts connected to a drum, so that the exact times
that correspond to steady declinations between the two images
of the astrolabe are recorded.

The mean value of one group of such recordings, always the
same, correspoends to the constant altitude of the star. On
the readings of the drum of the mlcrometric knob, the positions
of the prism are noted, as well as the posltions for which we do
not have duplication of the Zp images of the 24 recorded stars.
The 20 are taken as central.

If Vp is the mean reading of the 20 contacts and Vg the
reading when we do not have duplication, the difference (Vo - Vi)
changes according to the change 1n altitude of the observation.

This change as well as the diffraction s the only cor-
rection which can be applied to the zenith distance of 30°
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in order to find the zenith distance of the observation.

Because the focal plane of the telescope 1s inslde the Wollaston
prism, we can not use threads which could determine the usable
part of the optical plane.

That is, by displacing the prism, since its surface passes
through the point of coincidence, the coincidence is maintained,
and thus by micrometric continuous displacement we have more
contacts which give the (Vp - Vg).

5.3. The Impersonal Mierometer

The impersonal micrometer 1is the basic device for the above-
mentioned methods of observation. This is because, first of all,
the measurements by micrometric motions are better than those
by graduated disc, as far as random errors are concerned, and
secondly, by using the imperscnal micrometer, the pensonal
equation of the cbserver is avoided. The only method that can
be compared to that of the impersocnal micrometer is the photo-
graphlc one. For this method, it is important to describe and
study it.

As is known, during observations we wish to know the exact
time that a star crosses the vertical or the horilzontal thread
of the eross. But the reception of the time by electrical
circult Introduces errocors whieh depend on the operator, and
that is why we refer to them as the "personal equation of the
ocbserver." 1In order to eliminate these errors, the impersocnal
micrometer was lnhnvented, that 1s, another cross conslsting of
two parallel threads a small distance apart. The system of
the two parallel threads can move parallel to the multiple
crogs of the telescope.

If we assume that a star reaches the optical plane of the
telescope, then we dlsplace by a knob the system of vertical
threads up to the point when we set the star in their center,
and then, by continuous rotation, we follow The motion of the
star In the optical plane systematically.

Since there is no chronograph connecticn, every time the
predetermined graduations of the drum pass from the contacts,
we wlll have a time recording. In this manner, we avold the
personal equation of the observer. It is to be noted that the
drum has graduations of high precision. In the Wild T4 theodo-
lite, one rotation of the drum corresponds to 150",

We shall call the pace of a kneob K the displacement, 1In

seconds of arc, of the movable thread (if we assume that there
is one thread) of the mierometer, when the drum of the contacts
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makes one full rotation. This value is useful for the conver—
sion of the micrometer readings, which correspond to the turns
of the drum and portions of turn, in seconds of arc.

If we assume that we have one thread in the movable system
and that we bisect a star with it, and if ag 1s the reading on
the drum when the movable thread and the nonmovable thread
colncide; then if aj is the reading of the drum for the bisect-
ing of the star, the quantity ag - a] is the distance of the
star from the nonmovable thread. In order to transform this
quantity into seconds of arc, we obviously have to multiply
with the pace of the knob K. So if a is the reading of the
aiming, it will be:

'If= 3{ ‘f‘g(da"a{}-;

In the same way, if we make other observations, we will have a
system of equations of the form:

2é= ,gz'fx(a'o-a{// or Hai = By r2; + K. \!

Then, with the least squares solution, we determine K. In order

to eliminate the dispersion of the intervals in recording, we

make many turns of observations, or we use an electric motor

which 18 set so that it gilves a velocity a little smaller than

that of the star, so that the observer does not have to change . /87
the velocity to a smaller one, but only to a larger one. The
motor-driven impersonal micrometer eliminates the dispersion to

a few 0".01 instead of the 0".1 of the hand-driven impersonal
mierometer.
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6. MAJOR NUTATIONAL TERMS

€.1. Introduction

Closing the chapter on observations, it 1s useful to go
back to the material of the I.L.S. which exists up to the
present,

In doing this review, we shall try to find the main
nutational terms. The problem will give us a more general ldea
of the givens [sic] and the methods of correction, and their
detailed analysis will become a way of thinking for similar
studlies. The examinatlon of nutation by analyzing the obser-
vations of latitude, making reductions and harmonic analysis
will give the main nutational terms. This chapter was considered
indispensable and the final one, because polar motion is examined
more generally, the correction of declination by Talcott's
method is justified, and the chapter on precession and nutation
closes. Thus, the theory found in the following chapters will
be better understood. It is considered necessary to giveu an
introductory summary on nutation and to restrict the problem.
Simply because the material of the given data and the corrections
is very detailed, the work which follows will be given in the
form of a summary. In this manner, we wlll avold the danger
of golng off the main subject by referring to detalls.

Because o« the influence of the Sun, the Moon and the other
planets on the equinoctial swelling of the Earth 1s not on the
plane of its orbit and because of the rotation of the Earth, we
will have, on the one hand, one displacement of the equinox
point y in the counterclockwise directlon; on the other hand,
one periodic change of the obliqulty of the ecliptic, which 1s
called nutation of the celestial axis. The precession of the
equinoxes and the nutation of the celestial axis will have
equations of the form:

(ﬁa ) =, (f"’fo)-i- O’z(f- fo) + P51nggs + ?;iﬁQﬂM+ b51n9+ -C’sin‘-?'f- /

i

@ = ot P OS2t qulof Iy + bycof P4 Cyco8 @4 ..

where wy = 23°27! B8".26-468.44 t3 - 0".60 t7 + 1".83t3

wo 1s the mean value of thé obliquity of the ecliptic., It is
~given in theory that the period of p1 1s 6 months, the period of
qy 1s 14 days (13.7),o0f by 18 2/3 years. Exactly these coef-
ficlents willl be examined in detail.
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6.2. Brief Examination

In Talcott's formula ¢ = § + Z, we use,for the influence
of ~ nutation on declination,  the formula:

dob = =~ No (% coca 5y J2 - Stnex cos R). ¥

From the resulting errors (i.e., the differences in -errors),
we obtain the existence of an 18 2/3 term. We assume that these
errors come from the values of Ng, ng {(constant of nutation, ratio
of axes without nutation) and the value of the right ascension.
Thus the above formula becomes, because of the errors:

“,Jaf-:-(ﬂohd/?’) [(7o+.4/7) cos & 5'::70?-;6’,)567& c‘as‘)’(ag-,ge]]]f;

So it will be - . L
‘¢=Z+[-A05f.{f¢f ' ;01‘49:—,2#4;/

Obviously, we need to determine the corrections of An, Av,*bl /8
and bo. By approprlate transformations, we reduce the formula to:

=4 coser cos I2 + B St9ax cosdP+ Az cosar sy JPt By siyar sty de
or f

'Jfaz dy cos (a?-ar)-.aéﬁ, Sip (R-a )+ @y cos (Rra)t b 5/?,:(3’2*-6\’/;

N

Thus it 1s correspondingly necessary to determine the Ay, By, Ao,
By, or the aj, by, -d2, bo to be quite small.

The complete analytical solution of which the harmonic
investigation gives the pericds is the following:

The source of the mailn terms which are caused by the Moon
can be described -as follows. We take n:as the mean motion of
the Moon and K the ratio of the masses of the Earth and the Moon.
The factor n' is substituted by n2(K/HK).

We obtain an axis on the plane of the Moon orbit with pele
Py. On this frame, the direction cosines of T are (L, my n) (not
of course the same n). those of the Moon lcosr 1:‘?? 0)

7’
Then it is . |
cos [IM =€ cos C+ m 5t7 Q'

¥[Translator's note: The original has a "v!" or "u" here; the
term should, however, be AN, ]
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and its méan,value for 1 month 1is

glrect -é‘-’ (4”1"42):—%--;--1" Z- J— cos’*’f?Pg—iSf ng

Now XPPy = -pt (X = position assumed
by the = origin), where p 1s the
mean motion of position of the Moon
on the ecliptic and XPPZ ¢ (the
additicnal constant which can be
given when necessary). Thus:

n, s . - ) " o '. . )
" Cos /7@’ = cos Z cord+ Siv 2 3‘(7& oy (yv‘/az') l
8. = angle of obliquity, ¢ = length,
W = function of work dene by the Moon
(dynamic investigation) and
4 cog’z m(?ﬁ*J
a3 B (eod) coct 1800 s =7 55 (<L 7.
1K 2 V4 )
+e (¢
+/ ﬂq,?z siy 28 «:os'(y*PU* s1y¢ 5"”7[{ os ElYtp
Then /90

gfﬂ 21 i (c- /4}[ (3 cos Z-—-)Slyflﬂ:‘ sty 22 cog28 505(;/4/01] f/
fK
51922 $19%20 cos 2 (f/;-/ﬂz‘]]

7
7

P .3 7K (- 4)[ 1 sinli sin 28 5217(5//+pz‘)_5w"'z sep’d ;
4

74K
&9& 3 “ s’gyf(f//bf/.]

The constant part of 3W/sy glves one constant elimlnatlon of ¢
which is a contribution to the precession.

This is more than twice that of the Sun (2.2 times).

The part of 5W/%e and 5W/3y with an arc angle ¢ + pt gives
a motion of a period egqual to the period of rotation of the pole
of the moon Py, that 1s 18.6 years. This is the main nutation.
The terms with arc 2(¢ + pt) cause a much smaller nutation, having
a period of 9.3 years. The addition of the change of cos M
within a month gives terms of a period of 1/2 lunar month
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proportional to the solar periods of 1/2 year, but in more
complicated form. In a complete investigation, it is necessary
to consider also the eccentricity of the orbits and the various
disturbances of the Moon and the Sun. This has been done by
Woolard. Fedorov's work is referred te the terms of angles

f# = -bt + const and 2<f), and 1t is quite sufficient in the

sense of giving a summary of how these terms arise.

As the data collected for our observations, we consider
the values of the instantaneous latitude i n three statlons,
l.e. Carloforte, Ukiah, and Mizusawa. Obviously, these values
must be changed, and from these changed values, the determina-
tion of the coefficients desired will be made.

We consider the equation F; = 0.402C + 0.302M + 0.296U
where €, M, U are the mean values of the instantanecus latitude
for a year for each pailr in the three stations. This formula
is similar to that of the Kimura term. So F1 is independent
of polar motion. We wlll try to determine the long-term change,
annual and perilodic. (1) Because of certain changes, we have
various clrcles. So we require a reduction of the results of
these circles to a common system. We choose the system of Boss -~
GC. The correction in the declination for reduction to a common
system was calculated by the formula

DI B Big + Dyuz)s dp - HS

where (8gg - 81,5) is the difference in declination according to

GC and to the results of the I.L.S., Ap = uge - eLg with regard

to the proper motions, (K - Kpo) = difference between the catalogue
time and 1900.00. (2) The correction for the annual component of
the term t because of a change 1n the date will be made by a
correction f, where;

l /ﬁ 53”38 Siiﬂ (01'-02} cog (011-02-(2'). f

for the latitudes after the change in date (1922.7); 07, Or =
values of the latitude of the Sun.

(3) The correction for the.attraction due to Jupiter and
Saturn is computed by a formula of the form:

F o [sing. sinli-ai)s sind. cosp-cos 7|

T4
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where C = constant, @ = obliquity,‘i = latitude of a planet.

(4) In 1912, Ross showed that not all nutational terms had /92
been taken into consideration. Thelr introduction, though, was
done inhomogeneously (the mean latitude values before 1922.7
and the ones in space later); also, Wanach, during their intro-
duction, got the same value for declination of Jupiter and Saturn,
which 1s a mistake. Thus it was required that the correction n
be redetermined by Uemse. The corrected values of Fi will then be:

Fz =‘F}+‘46r}4r*372/p-f

(5) One of the most sophisticated and demanding phases of
the computatlions is the determination of the correction for the
value of the micrometer knob, which can be found if the zenlth
distance of a pair is known. The zenith distance expressed in
micrometric turns can be written m = (¢ - §8)/R where R = constant
for all the stations, ¢ = latitude. We will determine the
errors of magnitude R (R = mean value of micrometric knob)
where for the three statlons we obtain: R = 0.402 Rg + 0.30 2Ry +
+ 0.296 Ry. : :

The exact R values can not be found. We simply find certain
behavioral laws. We introduce a correction of R, AR = (S_. - 8,)/
Amy - m_), where my and m_ are the annual values "of the zenith
distances of a palr, expressed in rotations of a micrometric
knob, 84, S_ are the mean values of the quantity F» ( (-) denotes
an original point). The formula would be exact 1f the declina-
tions were exact, and the proper motions had indeed, as assumed,
had a linear behavior (which holds only for intervals of the change
of Fg) Depending on the three circles of observation, we make
some corrections of AR and we construct its curve of change, which /93
we examine in detail and make changes in; we then construct a
table giving the final AR values, and thus the corrected value
of F» will be:

/‘_-; :_/'—2 1*”7.4/? !

(6) We have already eliminated the sources of systematilc
error. In order, however, to have an harmonic analysis of F3,
and to avoeid arbitrary errors, we must alsoc eliminate the non-
periocdic changes of Fj. So for the groups A, B, C, (circles of
observation) we composSe separately for each palr the annual values
of F3 and then we subtract them from 1900. . Thelr differences
will be Sp, S, Sgs, and we reduce the maghitudes Sp, Sg to the
- group A.
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. 55’ :53 f'.d‘qa y 5{, = 5{ 1"1,‘; Where?" A’AG SA and A{Actfﬂ -5C‘i

(Agps Apc are the systematic differences), and we will have the
value Fy = Fs + As where As has an appropriate value for each
group A, B, or C.

We could suppose that from the information originally gilven,
we can directly determine the coefficients of the nutational
terms. We did not, however, take into consideration the errorr
due to declination x, and the error due to special motion y,
in which case the Fy obtained from observations and the quantity
A {=v) will be connected by relations of the form Fy = x + ky + v.
We make successive approximations, neglecting at the beginning
the periodic term v, and so we determine x and y.

We form Fg where Fg = Fy - (x1 + kyj) (=4¢). After proper
manipulations, equating with A4, we obtain the values of aj, ao,
b1, by and so we determine the values of N, An, g7, Bp which
were desired.

An interesting matter that appears 1s the following. We
assumed R to have linear behavior, and the value of n to be
increasing (correcting). These do not hold, i.e. the value of /94
n requires a correction depending on the separate values of
the correction, by a dependence which appears in the values of
AN, a term of 1/2 year. From an examination, it 1is not proved
sufficiently that the term of 1/2 year 1s an error in the value
of R. In other words, it is probable that a term of 1/2 year
exists.

In order to determine whether the assumption of linearity
affects the calculaticns, we form the identity

Fos Xo + Kty + K22 |

and we determine by least squares the value of Z2. Finally,
in order to take into consideration also the systematle errors
in R, we form the formula

. /C,v :5—(X2*©/2)l‘.
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where we substitute Fy for Fg so that we will have the solutions
from the previous solution of the system. Fp nowogives the
information needed for harmonle analysis.

An important problem which has been attacked by harmonic
analysis methods is whether there exist terms of perlodicity
of the order of 18 years (as Kimura mistakenly found a term of
11 years). We will examine the other form ofiianalysis, which
we originally gave, where we denote the frequency by p, where
u = In/T.

Fe __,), cos £ cogatBfcosgelsina t Ay sipplcosa t+ Bz siygplsiy & ‘

This can be written Fr = Acosa + Bsina.

We consider A, B fixed (examining for small pericds) and we
apply a special method of harmonic analysls, finally determining
A, B for two circles, and then combining them. After a seguence
of hypotheses and computations, we conceiude that linear periodic
analysis gives a term of the order of 16 years, and not another
one, which, because of a probable error of 1-2 years, obviously
g i ve s the term of an 18 ;2/3.year period. Notice that the
error is rather due to the . inexactness of the method.

We can, from the determination of A, B, determlne the
values of Ay, By, A2, Bp also for the two periods, and can make
ancther computation for AN, An, B871,.8»2. We cbserve that these
values agree with those given before.

With the above comparison, this chapfer on the principal
nutational terms concludes. The nutational terms of a smaller
period (14 days, etc.) are glven by different methods. A few
corrections in these were made in Ross' introduction.

The main conclusion of the above examination of the obser-
vations is the nonexistence of another term besides that of 18 2/3
years, a result which has been completely Jjustified. Finally,
the statistical analysis shows that 1t is possible that a term
of 1/2 year also exists. The idea of the probability gives rise
to some doubts about the methodology used, for the probability
of repeated arbitrary and systematic errors.

Finally, it should be noted that the material is not homo-

~geneous, and many corrections have been made for this reason.
This probably introduces errcors in the course that we followed,
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and in the unavoidable approkximatlons that we made. The better
system of results relies on the material of observations in the
future, and on the progress in observatlons and instruments.

(The material that has been used dates to 1934:)

6.3. The Major Nutatilonal Terms /96
" 6.3.1. TResearch Methods, Original Information Given

In latitude determination by Talcott's method, the relation
below 1s& used, in general:

b, = Z + 8 (2.1)
where Z is the obgerved zenith distance and ¢ the phenOmenal
declination of the pair.

Keeping the principal nutational terms only, we can express
the influence ¢ f nutation : oon  declinatlon by the follow-
ing formula:

Aaé':_—/yo(%co;'a’ .‘5'/'7“2“5:7d C_OS“Q)/ ' (2.2)

If the values of the nutational constant Ng and the ratlo of the
axes of No (no nutation) have an error, and the nutation is
delayed in phase, then the values of the latitude computed from
(2.1) will include errors dependling on the right ascension of

the pair o and the longitude © of the position occupied by the
Moon. Then in the change in latitude a 1% year nutation appears
(the nutational term) of which the range of nutaftion and the

phase can differ for pailrs of different values of right ascension.

We assume moreover that the result of the principal
nutational terms 1= expressed:

A = = (WordW) (1,4 80) cosa sin (R-4,)~ sty cos (2~ fa )] (2.3)

where AN 1s the correction in the nutational constant, aAn the
correctlion in the ratlo of the coefficients of the princlpal
nutational terms, and 831, By 18 the delay (difference) in phase.
Then the nutational terms are not longer; they are ineluded

in the latitude change and are computed by

9”:fo-—.4&0¢+4‘75 1 (2.4)
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This 1s a reason for the 19 year latitude change ¢ to be /97
put in the formula

S PR Sy P (2.5)

The difference of the right-hand side of relations (2.2) and
(2.3) will change as follows:

dpdicosa cos St B sipar cosdd + 4y cosar sy dPe B sipar sip 2 (2.6)

where:

,4{ =__/yo%/é’, A, :%ﬂq*ﬁﬂ’?a ;

(2.7)
B, = ~4N Bz = ~Vo fa /

or in the form
Jd
do=c cos (fo-a)t b, sty (R-c)r a, cog (L2+a)+bg sip (42"‘0()1(2.8)

where the quantities aj, a», b1, bs have the values:

& =-L8 (Bar o) An L (Ba-afpr) !
o 4 —7jo (2.9)
,6,:-%’1474'!‘—%22.5” 2:-0/2——1’17--—&14/}_/&

P—

By solving Egs. (2.7) and (2.9), we obtain:

v : Azt 8 no _ {(1-00)by+{1r 0 ) ba
' A autz /g _ Bz olz-oy (2.10)
L N

}

By using relation (2.10), the problem of determination of the
corrections AN and An and the problem of the difference of phase
B1 and Bp reduces to the determination of the coefficients A1, Bi,
Ap, Bp or of ajy, ao, b1, bp. :
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At first, we can see that these coefficients are very small
and only a seriles of very precise observations, over a long
time period, is appropriate for their determination. This is
fulfilled by the systematic latitude observations, especially
those of the International Latitude Service (I.L.S.). Unfor-
tunately, these observations were only published 1n 1934. It
was impossible to use the whole set of observations, because in
the exposition of changes in the program of some pairs of stars,
less than one nutational period was observed. (By nutation we
mean the change 1 n obligquity of the ecliptic.) The obser-
vations that are avallable in general ..can be classifled as
follows:

~
oo

A 26 pailrs, observed during 1900-1934
B 27 pairs,.observed during 1900-1922
C 21 pairs, observed during 1906-1934

In column 1 of Table 2 we glve the numbers given to the
palrs in the programs 1899-1905 and 1912-1922. For some of
these pairs, the number was increased by one in the program
1922-1934 so that, for example, pair 65 was numbered 66 after
1522.7. These pairs are Indicated by an asterisk.

The letters A, B, C denote the circles when the obser-
vatlons of the glven pairs were done. The GC numbers of the
stars compose the palrs given in column 3. Columns 4 and 5
give the declination and special motion of the center of the
palr, computed from the information given in the catalogue.
Pairs 42, 48, and 84 consist of stars not included in Boss!
catalogue. Their declinations and special motion were obtained
from the catalogues published by the I.L.S.

As is known, 96 pairs of the I.L.S. program (in whilch the
observations were made before 1935) were separated into 12
groups with 8 pairs in each group. The closest values of the
right ascensions of the centers of these groups are given in
column 2 of Table 3. Columns 4 and 5 of Table 3 indicate
the fractlons of the year in which the mean values of the obser-—
vations of the corresponding groups fall. There are two values,
¥1, Ty, because since 1922.7, the observations have been obtained
symmetrically with respect to midnight, which was not done before. / 9
Consequently, the mean value of the observatlon for each group T
has changed. '

We will in future denote by K the total number of years that
have passed from 1900.0 until the beginning of the year of obser-
vation. Therefore the epoch (time) corresponding to the mean
value of the observation of a glven group can be expressed as
follows:

1900.0 + K + ry before 1922.7
1900.0 + K + ro after 1922.7
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TABLE 3.

L | . - 7 |
Mean Values Values of 2 in the o

Y of _ Mean Value of the
Time of Observation | 4r ¢

G = i i .
TOup § Pair Chservations of the Group
Z i /900 73227
7| 1% 1-8 | oes | 086 | 2437¢ #5°0
Z {3 914 Q93 ors

rl 5] f-ze | opr 0.07
|7 s 008 | o0
V| 9| 34 or o /
vilow! e | 020 | 048 |
viz Vi3] vsse | 029 0.96
yrrrl 15 Trce | 098 | 035
% | 17| 65232 | 04y 043

X [ 72-8 052 0.5¢

X727\ 8/-88 ase 0.60

XI7i23187-96 OL3 048 |

1. Pairs observed before 1922 and having the number 72 were /100
assigned the number 73. Since then, they changed from group IX
to group X.

2. The negative value of rp for group III since 1923;the
mean value of the observatlon of this group changed to 0.33 from
the previous calendar year.

3. A4té is the reduction to the phenomenal position.
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6.3.2. Reduction from the Original Data to a
" Common System of Declination and Special Motion
" (of Special Motions)

The original data collected for further computations
was obtalned from the following sources:

1. 1900-1905: Results of I.L.3. Volume 3. The declina-
tions and special motions with which the latitude was computed
were published in this volume. Original time 1903.C.

2. 1906-2908: Results of I.L.S. Volume 4. The correc-
tions are in Volume 5. '

3. 1909-1912: Results of I.L.S. Volume 5. The declina-
tions and special motions are given for 1909.0.

4, 1912-1922: Results of I.L.S. Volume 6. The declina-
tionas and special motions are given in the same volume for the
time 1915.0. '

5, 1922.7-1939: Results of I.L.S. Volume 6. The declina-
tions and speclal motions are given for 1928.0.

, In this way, the instantaneous latitudes were published by

the I.L.S. and were computed for the different ecircles with
different original information gilven for declinations and special
motions of the palrs. We take four systems for the following
original epochs (times): 1903.0, 1909.0, 1915.0, and 1928.0.

The mean date of cbhservatlon of a palr in the gdifferent years

is not exactly the same, but the limits for T; and Tp remaln /101
satisfactorily limited. Thus it is posslble that these magni-
tudes do not exist separately for each year, but we can simply

use their mean values computed for the first period (bdfore 1922.7)
and the second {(after 1922.7) relatively.

During the year, only three I.L.S. stations are considered,
i.e Carloforte, Mizusawa, and Ukiah, that make observatlons
witheout Interruptilon. As original data collected,. only the
results of observations of these three stations were used.

First, for every year and for each palr, we form the mean
value of the instantanecus latltudes. We obtalned a long set
(auay whole [sic]) of degrees, minutes and seconds, and we
noted the rest in the original for the corresponding stations,
Moreover, we obtained the value of the magnitude:

o= q4020 4 g300m £ 9296 2 | (2.11)

e
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These are glven in the sum. For the computation of these
values, 135,000 instantaneous latitudes were used. The expres-
slon (2.11) looks llke the usual expression of Kimura's term Z,
which 1s used for the computation of the polar coordinates from
the observations of three given statlions. Hence it follows that
the value F; does not depend on the motion of the pole.

It 1s necessary to note that in (2.11), C, M, U do not
denote instantaneous latitudes, but the mean values obtailned
for~each year separately for each pair. Thus in the change of
F1, the annual component will not be present (for the time being)
because the mean value of the observation each year comes very
close in the same part of the year. So only the slow latitude
change remains nonperiodic, and the one of long period. For /102
the general analysis of the whole material, with the latitude
change of long period as the object of our research, 1t was
necessary that the results of different circles be reduced to a
common system for the declinations and speclal motions. We
obtained the system of Boss —-- GC. The declinations of the 71
pairs were computed from the Information given in the catalogue,
and were found for the four original epochs {(times) 1ndicated
in Table 4, and then the differences

Sac ~ SLs

where Sgc 1s the declination according to GC and &g that obtained
directly from the I.L.S3. publications. These differences are
gilven in cclumns 2, 3, 4, and 5 of Table 4. The reductions of
pairs 42, 48, 84 were extracted with original declinations and
special motions obtalned from the catalogue published in the
"Results of the I.L.S." .In Table 5, in columns 2, 3, 4, and

5, the differences in special motlon and declination are given:

Yoo frs = 4P |

The latitudes published in Volume 3 of the "Results of the
I.L.S." were computed with thie precession constant of Struve,
and some corrections were required for them to be reduced to
Newcomb's value. These corrections. were extracted by the formula:

Adps =- C000%6 s

where pg = annual precession in déclination. These are given
in Table 6 in multiples of 0".001.
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The correction in the declination by which the value F] was
reduced to a common system was computed by the formula:

j;: (Jéf*dls -I'.d;df} 1“44;( {/I'/'Ka)'

where K, ls the difference between the time of cataloguing and
1900.0. The terms inside the brackets keep a constant value
within each c¢irele. The last term was found simply by multi-
plication of Au by consecutlve whole numbers.

For the first circle of observations, we use the formula

Sy 4 ps .

As we have shown before, the annual component of the term Z
does not affect the change in magnitude F; if the mean time of
the observation remains constant. During 1922.7, this time
changed, and 1t was necessary that a very close calculation of
the result F; be made. For the observations from 1922.7 until
1935.0, we use the formula for Z which was given by Kimura:

T 07019 sy (RO-a)

where © i1s the mean longitude of the Sun. Hence we can find the
correction for the change in result of the Z term which we must
put in all the latitudes obtained after 1922.7.

|
=038 siy(8,-82) cos (& +E ~ a) y

where ©7 and © are the values of the Sun's longitude at times
T; and T after "the beginning of the year. The correction J is
expressed in 0".001 and is given in Table 6.

" 6.3.3. Corrections for Attraction Due to Jupiter and Saturn

The aberration due to a planet was compiuted by the following

formula of Batterman:

—
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where 6 is the declination of the ecliptic wilth respect to the /104
equator (obliguity) «, 8 are the right ascension and the declina-

tion of the star, » is the longitude of the planet and c is a

constant coefficient. If we suppose that the dec¢lination of

the star is almost equal (very close) to the latitude, the

formula can take the form:

£F_ _c [Jr;;l?g;..fzh (d-a)+ sin?. CO’F‘?'CM‘?/, (2.16)

- -
-

The coefficient ¢ 1s 0O".0086 for Jubiter and 0".0019 for Saturn.
From formula (2.16) the corrections were computed from 1900 to
1922, For later years, the corrections were obtalned from

the tables that appear in the "Results of the I.L.S." Volume 8.
Table 7 gives a summary of the values of & in 0".00L.

6.3.4, Corrections for Small Nutational Terms /105

In 1912, Ross showed that in the calculations of the gquanti-
ties A and B published in the Berliner Jahrbuch [Berlin Yearbook],
not all small nutational terms had been taken into consideration
as they should have been, for such precise calculations. He
published a list of these terms and auxiliary tables for the /106
calculation of the corrections, for the influence in the phenom-
enal right ascenslon and the phenonienal declination. Before
1922.7, Ross' corrections were introduced in the I.L.S. in the
mean values of the groups, and after this year, in the separate
latitude values. This Introduced some errors that were not
eliminated by later corrections. There was some confusion in
the work of the I.L.S. which we will try to clear up.

For the first 6 years, the corrections for the influence
of Ross' terms in the mean values of the group were computed by
B. Wanach. He dencoted the corrections by bdgs 49 Apo 1n
which the index .indicated the corresponding year 1900 1901,
ete.). The table for these corrections for the cycle of obser-
vations 1906.0 to 1911 appears in the "Results" Volume 5.
These tables besldes Ross' corrections give the value of the
constant obtalned, and the "Abberation" due to Jupiter and Saturn.
These are denoted by A4, .

In the calculation of these corrections, Wanach, by
mistake, took the same A¢y; for all the years of observation,
which 1s not correct. Mihlig observed that none of the I.L.S.
publications mentioned this. Only the "Results of the I.L.S3."
mentioned that some errors existed in Wanach's tables, and that
they must be replaced by Mihlig's tables.  These tables are of
‘the same form as those of Wanachj; however, they satisfy the
condition that the columns marked Adps A¢1, ...y contain Ross'
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corrections in addition to the ones due to aberration caused by
Jupiter and Saturn.

~
b=t
o
=3

Unfortunately, this does not exist anywhere. Even 1n the
beginning of 1916, the formula used for computation of A, B
(Berliner Jahrbuch) was not yet complete, and some small nuta-
tional terms, besides the numbers indlcated by Ross, were added.
Notice that neither Mankoff nor Kimura had observed this, and
in the correctionofthe remarks, they continue to take into
consideration all of Ross' terms as they appear in Volumes 6
and 7. This error was discovered only in 1952 by Uemae, as
we have already mentioned, in Volume 4 of the "Results"; the
corrections for the influence of the small terms, however,-
were not done for individual latitudes. From Uemae's work, we
conclude that we can not use these values for correctlions as
given in this volume, for 1916 and the following years. These
must be computed from the beginning. This is difficult for
the information published in Volume 8 of the "Results." Ross’
corrections were made here for all individual latitudes, but
the computations were wrong. The omissions and the 1ntroduction
of new corrections introduce many tedious calculations. For-
tunately, we can avoid this, thanks to Uemae, who gave a
table for the cycle 1922~-34 for the difference in corrections
an = U - R, where R 1s the value of the correction obtained if
we take into consideration all Ross' terms, and U only those
that had not been considered until 1916. The values An are
given for mean values of the groups, and obtained separately for
morning and evening observations. We have recomputed the cor-
rections for the influence of the small nutational terms from
1900 to 1922. For this calculation, we used the tables of the /108
values of sined and 8. for the years 1900-1915, the ones
published by Ross, and for the years 1916-22, those of Uemae.

The following are given as a check of the computations:
1. Wanach tables for 1900-1905.
5. fTables of the "Results" Velume 5 for 1906-1911.

3. The values A¢ in "Results" Volume 6, from which we excluded
the correction for the "aberration" due to Jupiter,and Saturn for
the years 1912-1915.

The corrections for the years 1922-34 are obtained according
to Uemae's work. In this work, for every time, the mean value
of the corrections was formed for morning and night observations
which Uemae gave separately. The results were summarized 1n
Table 8, where n is expressed in 0".001.

‘ Thus, we are able to obtaln the corrected values of F by
the formula: ‘
Fo= 1+ DitF+p4 ] | B

i
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6.3.5. Calculation of the Zenith Distances of the Center
of the Pailr

One of the most demanding phases of the computations was
the determination of the corrections for the value of the (eye-
Plece) micrometric knob. For thils determination, it is necessary
that we have the zenith distance of a palr. The zenith distance
is expressed in micrometric turns; it can be written as follows:

/110

l

where ¢ 1s the latitude, &39g90.0 18 the mean declination of the

center of the pair at the beginning of 1900. AV is the annual
change of the mean declination, and Até is the reduction for the
phenomenal position.

Because the value R for all the stations (3) can be con-
sidered that was taken to be the same and equal to 39".74, we
will have:

1l _
R = 0.02516

Moreover, the instantaneous value of the latitude was given as
the flxed value.39°8'8" in the calculations At was taken into
consideration only as a fact of aberration, in which case

Lrd= — 20 4?[:050 sing #(sty 8 cosa—-cos O.cotd sina }J('b(,a]r

We introduce the following note:

P . dm AV g AL oy = g T o]
‘W?o—*.g (P /900.?70,6-— aQ_’ A _‘0

¥

and formula (2.18) becomes

. [
P %oa—___gf KJr

The values Até are given in groups in column 8 of Table' 8,
Table 9 gives the m values for each palr for the beglnning and
end of thecycle of observation.
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or mean graduated value:

“of the Micrometric Knob, or the Mean Graduated Value

It was necessary to determine the errors in the following
magnitude, which we call mean value of the micrometric knob,

K= 0402R:+ 0302Rm + 029 &

|

i
i
'
i

where Rg, Ry, By are the graduated values of the three stations.

g0

TABLE 9.
. ™ o 1
Pair 7550 T 7008 | 7922 | 7934 o ¢
1/ — + 8.4 J— — 53 . o504
2 |+ 4.7 . |- %8 _— |— 0501
3 + 53 - 5.7 _— e 0497
5 i+ 22 - 7.9 —_— e D479
8 + 42 . - 80O — | O.%%0
g |- 3/ | ..~ 120 — - 0420
10 - 4 7.4 -~ 39 - 0403
ff  + 99 | — 25 |~ 0328
13 + 115 | .04 03 |~ 0340
14 - 23 - 9.1 —_— | — 0.317
19 - £.2 . - 12.3 — |- 0292
16 — + 13 — 6.2 |- 0Z68
17 1+ 118 . 4 3.9 | 0233
/8 + 19 Coe _ 57 |~ 0212
/9 —_ &7 .. 202 | 0477
20 - o0 . .. - /402 | —— |- 0449
24 — 0 - 4.0 |_ 1445
22 - 06 i 3.8 |- 0095
.23 |- %0 : L 1 | 0062
24 — | 35 . - .+ 28 |-0024
25 |+ €0 + 6.9 |+ 0027
26 4 48 .o L+ 69 + 0061
.27 — - 80 + 92 [+ 0095
D o2e - 42 L + 3/ 4 0126
129 _— + 24 4 69 I+ 0.160
-4 - 738 - + 07 =+ 0.454
34 — i+ %2 .. |+ 33 % 0304
L35 |- {0y ~ 25 | 4 0346
I3 |4+ ou + B4 | . W 0368

(continued)
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41~ 05 Sy e L — 4 ows8
42 T 924 . .. |+ Me |4 0.468
4y = 13 R ..+ g0 |+ o0yB¥
49 ¢ 4.3 .. |+ 126 _ { 0503
48 | = _ 98 L+ 44 |t osos
50 P 5 .. .+ a2 — 4+ 095
5 [— 4.2 .. . |+ €& .+ o049
52 |- _ 116 L e 24 1% o488
5 — — 5.4 L+ s ¥ ogwo
52 - 0.7 Lo e &S - + 0.4l#
578 - £19 A R & A AR - o.402
&1 + 2y L. L+ 83 |+ 03
62 30 . e 34 |+ 029
. A . o™
_/_sz T 4900 | {906 | 1972 | 1934 di
64 |+ 431 . . .14 96 . i+ 0240
&5 — i+ 23 + B3 l+ 0244
67 |+ 23 . ‘v 6.9 ‘i+ 0134
68 i 05 | . . .t 25 [+ 0f0F
s | o - 33 ... .= 12 l+ 0075
0 - &4 | .| = 47 + D04/
7 - 24 A O P 4 PPYYZ.
72 |- S0 i 55 | oor4
23 '+ 07 | . . . .. .l= 05 |- 0034
74 1= 32 R R IS A R PR o Y/
25 .+ 35 . ls 27 |- og0f .
75 + 22 . .. = 34 !_ 0156
i T DR R DU P YL
78 |+ 4f O T SR l_ 0.209
80 - 35 - 95 | — |- 0971
]2 + 35 L. . 1_ 50 |- 03083
83 — 03 . 1_ 1.7 — ~ 0.339
84 v a8 | — 4t |- 0335
85 49 oL _ 18 |_ 0375
86 — i+ 495 ! .- 59 |- 0.39%
87 + 21 |~ 7.0 —_— - 0¥
88 - 24 - M5 - |- o427
89 . 09 | . . .- W6 | — 0442
90 SN FRS 4 k . L_ 84 |- 0458
% | — |+ Te : \_. 76 |- o4t
92 + 3.8 : l_ 458 - - 0434
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We found earlier that the R values are used in the work of /113
the I.L.S8. and in some cases they are obvlously wrong. It is
not possible to find their exact values, but we can use gsome
Information given about their general behavlor. This is necessary
because some errors in the values are obtained for R, and they
completely change the curve of the nonpolar variable of lati-
tude, taken in the observations of the separate pairs, and they
may - very significantly affect the final results.

After trying various methods, we define 1n térms of the
following known facts a basls for the comparison .of the mean
latitudes obtained from observations of the pairs with zenith
distances of opposite points.

We choose some palrs with large positive values of zenith
distance Z. The mean value of these Z values for these palrs is
expressed 1n turnings of the micrometer knob. We denote this
by my and the mean value of the Fp values by Sy. We denote by
m_ and S_ the corresponding quantities with negative zenith
dlstances. Then the correction in R can be determined by the
formula

A I T .
R | (2.22)

This will give the exact mean graduated value only if the declina-
tions are absolutely exact. Of course this does not happen.
Moreover, in the exposition of the errors of special motion AR,
they were determined in such a way that they can have a false
linear behavior. In the first stage of the calculation, we

can afford these errors, because we are only interested in the /114
periodic intervals of the change Fs. It was 1lmportant to notice
that the corrections were completely independent of the changes

in latitude of a nutational character. On the other hand, it
could happen that after the introduction of the changes, these
changes were negligible. Usually this can not happen_, in the
collection of the pairs; for the determination of AR we can
observe the fcllowlng principle:

In each of the two groups of palrs (so that we have positive
and negative zenith distances), the mean values of gine and cosa
must tend to zero. First we compute AR separately for the
cycles 1900-22 and 1906-34, Table 10 includes some data

~given for the palrs. of groups used.

The catalogue of pairs composes the groups,as in Table 11.
The original data for the calculation of the AR corrections
and of these corrections are expressed in 0".001, and are gilven
in Table 12. Because the determination was done separately .for



TABLE 10.

L’)Qgii..l’\hihtajfs% cycle of ‘observadions faoo Q06 M
Ewd of cycle of observatiows. 19272 1834
Number of pairs iy the group .. . /2 ;s 0w 9
Mean of cenith distawces of pairs in The group
at the beginniyg of Fhe cycle iy rotations of
'/é? MECramPIer SCrew Ll 492 | -522 +3.78 -~ &3
The same for the end of the cycle . . +5,43 | -9,29 /4330 ~ 4.2
Hean value of cosa . . . . . . . . 1-0,04% 4001 | +ODI | —0.04
el en S |-00% | 4003] -003| Vo4
- il Y. -it- T . .. 0_28. 024 0_2? 0_25
TABLE 11.

1900-1922 190G~ 1934 }

Pair ™, Patir w Paiy m g Pair o |

i3 +11,5 9 — 3. H + 949 8 + 1S |

{7 +103 20 | -—-30 13 +11.5 29 -~ 06 !

25 4+ 69 - 23 - 20 17 418 23 - 50 1

26 + 43 50 =l 29 + 60 27 - 86 |

3¢ + Ou 32 - 78 2 + 48 52 U

39 + 24 33 -10.4 29 414 EDo) - €l ;

él + 24 | 4y ~11.9 38 - 58 # -~ 26

64 + 43 ST —-03 43 -52 12 - S0 ’

67 + 23 5% ~11.9 63 + L0 T4 - 32

73 + 35 30 —6J 6% + 23 !

78 + 4l £ - 32 6B - 12 |

82 + 99 80 -39 F¥ + 6 r

83 —-03 73 + 36 |

5 =2\ 8 + Wl !

83 -09 8y + 80 [
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TABLE 12.

Year
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the two series of observations, we obtain two rows of values, - /115
i.e. ARI (cycle 1900-22) and &Ha {(cyele 1906~34). It is

obvious that &R and AR, present systematlc differences.

In order to combine the two series, we find the mean
differences:

: |
dﬁl-—-AEQ: —O'”DOSE. [

-~

The direction in the change ARi - AR2 does not show. S0 we can

simply add tolall AR values a constant 0".0032, and obtain as a
final correction the graduation of values:

190} ~05 4R, +0]0032.

N
1907 -21 £ (4R, + 482 J? 0,/ 001/6 [\
/922-34 4R |

These AR values are given in Table 12. From these, we /117
obtain Graph 3. In this graph, the jump of AR 1n 1922 is
clearly shown. The general path of the values between 1905-
1915 shows that a dlscontinuous change probably takes place in
1922. 1In order to see 1if this 1s actually so, we follow-the
graph more closely for 1909-1911, taking the following con-
siderations into account. The AR values are computed from (2.22)
and denote corrections in R, taken on the average for the
following time series of observations..

R

!
O 2 & 6.2 mw 12 416 1k 20 22 2k 26 28 30 3234 K /

PO
o _\ i
- 10Q * \X ‘"‘“!} { f j
: f
A I |
4 1
- 200 \x;;rﬂ~ = f
l__- . !
~300 |
AR
Figure 3.
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any pair.
the graph breaks (discontinuities).

When the sequence of values of AR makes it possible for us
to construct a smooth curve, then we have no difficulty with
Difficulty can be expected from the points at which
In order to go into more

detail for 1909-1911, we find the values St and S_ 1n this inter-
val for consecutive time intervals, each of less than a year.
The results are given in Table 13.

/900«-/9?2

/810 . P4

ST
. 58
LAY
Lo
.28
. b4
L7
.78
B4

.97

.98

7971

O
A1
.78
37

b

.54

.58

64

¥
.78
.8k
.87
.98

1942

a4

A1
.18
.24

96

S

862
859
| 854
| B39
| 859
863
869
B75
873
879
885
885
882
883
883
884
884
887
887
884
884
880

880
848
863
861
852
| 850
848

880 .

i
:
|

/9/0

28

.36
4y
.53
.64
. €9
78
. 86
.94

1911

.03

A

48172

18
.28
.36
4l
.93
61
.69

F8

.86

94

.03

LA

.19
.28

‘m |
;
i
i

TABLE .13. o

ﬂ 1906-1934

1 | bt
5,} Lty | St

|

.
973 F/M_zs 853 | 19/0 .27
987 % B49 | .33
917 “4¥ L Buu 40
g73 .58 844 47
967 69 850 .53
967 8/ 856 .60
963 .92 866 . .67
96/ 14941 .03 868 73
955 | 14 873 -
956 | 25 868 87
952 | 3¢ | 873 .95
944 .41 | 875 1941 .00
944 | 58 | 875 07
95¢ 69 | K63 43
952 87 | 851 .20
953 | .92 841 27
%8 {1912 .03 836 .33
950 Ay 831 40
56 25 1 827 R
952 _ S .33
95/ —_ _— .60
855 —_ - .67
Q61 _ —_ 73
960 _— _— 80
963 — ___ 93
— — _— 1312 .00
_— — - 07
— —_— —_ A3
R —_— —_ .20

. e e



By using the data of this table, we construct smoothed
graphs of the change of S; and S_, and from these we obtain,
for every ten intervals of the year, the differences S_. - S;,
and so we can use (2.22) again; but now the results of the com- /118
putation of the formula are denoted by I instead of AR. The
reason for this change is glven below.

TABLE 14.. /119
. Zoochk | 7 | 2 | 4R | Fooch | 7 1 & | 4R
.‘" /8909.8 | -75 1911, 4\ -38 | -n0 | t24
f 9 | -78 | +/0 | - 65 .5 -50 ' -10 ¢ #19
/9/10.0 | =75 40 | -100 .6 -80 1 -/00 i + 4
S -63 | #80 -/50 .7 “FO L — - %4
‘ 2 -0 +80 | -6 - —_ = . 30
‘; ) -32 +80 | -8 .9 — | - | =35
‘. Y -9 +70 | -46 1 1812.0 i — ! =60
f 5 1 58 | 460 | -4/ ./ — | = =70
.6 -3/ #60 -56 .2 — =, =76
7 -2 | +%0 - 8¢ .3 — o~ ] -8
.8 -22 | #2o -70 Y - - j-8s |
.9 -22 o =55 9 - | - -3
1911 .0 -22 0 -60 b - | = i -9
A -2/ 0 - 70 P - = 102
i 2 -23 | -90 -36 .8 _ ’ -0
3 | 28 | 80 | -1 T I S PP

If we express the time © in years, the mean value in 1 year
of the correction of R is obtained from (2.22) and can be given

approximately as:
- t-}-f o i
1= ‘/5/ 4Ry Cﬁf/

In the case of linear change, I = ABt + 0.5. Of course, for

the time intervals where we consider it as a linear funetion,
the approximation of AR is not exact. Then, for the computatlon
of AR; we can use the approximation
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IRy = dRgps —

o7

—n.

d'¢

but then it is necessary that we know 4R, ,q.

of time.

(2.24)

The later cconditions

are fulfilled if we approach gradually the part of the curve
we are studying from a section in the. neighborhood for which
the change in R can correctly be represented by a linear function

The part of the graph for 1911-12 has this property, and
we start our computations from there, going backward along the
The results of the computation are given in Table 1k,
In the last column of this table, the values of AR,/ .starting
from 1411.7 are obtained by the construction of an earlier graph,
but the rest are obtalned by an extension according to (2.24).

x=-axis.

We willl glve a result.

1911.3, we first take from Table 14 the value for 1912.3.

is (-0".0081).
find dl/dt

Then, corresponding to the date 1911.3, we
-0".0080, from which we obtain the followlng quantity:

& ””
A,Q,% 3 = — 0/008¢+0[0080

—

~Qooas.

In corder to obtain the wvalue of AR for-

This

From the data of Tables 12 and 14, we form a large gradual
graph of AR and from this we obtain the final corrections, which
The fact that the method can
not be rigorously expressed in words gives the corrections, but
their chances alone do not affect the final results very much,.
But this is not certain a priori, because 1t concerns the false
linear changes of AR, which can form a sequence of errors in the
special motlons of the palrs of stars used for the determination

are glven in Table 15 (in 0".00L).

of the corrections.

(These results can be studied in detail below.)
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TABLE 15.

Covrrections fov roup l ]
R T 7 T7 sl ovl v Ly Lt rx ) x i xrixur

' _¢ _6
0 _6i_ 67l 7-F 1% |-%-6-6[-6,
/|- sl §5|-6|-6|-86-G|-C|-6 _5_5\1_5!_5
2_1.’/'_4/_5__'5 Gl _b4 & -;‘*i—’:*ﬁ—“
3 —2],~2—3 -21—3|-3|-3|-3 —3-31—2;—2
b mofi=fl-2|-2 =2|-2-2]-2 -2-11-/%/
5 010—/—-/—_/-1‘-7’—/ 0| o) o 0
6«7+ 7] 0 00 0] 0] O] O'j 0, 0 01
7 ol-si4slssl 0 01 0 0f 01 ol 0l 0

(econt'd.)
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Table 15, cont'd.

8 m b= == 1 —2—21-—25—2}-33-—3--3 :
9 - 9{-/0—a—ai—5§~s~f51-—57—eg—s - 7\~ 8 |
/10 -c;fs—-/oﬁ-/a%—/a-//—ﬁg—s;—s;—-—u;—s;—s -

/) -s-61m 6675 3 0+ Z# 2+ {—1:—3
12 |~ 10—11—-6|-6-7—1-8-8—g=9—9:~10
130\ g5 i ff =1 |- 2 =12 | =17 =13 |—13  — fe =18 ——/Z/l—/.r
14 (= 18l~ 19|~ 1616~ 16|= 17 —1:1 2 ~17 1= 18 18 |

13 - 20l~20 — 49| /91— 19— 191~ 191-19 l 20— 20— o 20 |

I

] COV’VEC‘L\D%S {for qrou.p ‘
J' ;111 lrzzl v | v Lvs lvrr i 1x X (x 7 X1z
r : ! |
16 2/1-211-20~20-20|- 20"~ 20 - ARV 2!|-—-27’
17 -22*—22-2{(—2/—2f—-2f‘— 2r'—2/—2r!-—2w—21—-22
18 _ 2020\ 22|~221-22]|—22|—29 -92: ~22 ~22 —22 22
- {9 221221~ 22;22l 22 — 22;—29 22— 22'——22*——22' 22
L 00 |—94-271|=22:=-22; -zzi 22: -—.?1"— /-——.Zf =27 2f ~2f
9 =2/ —21 —2f!~—:zf 24 =21 —2%—-2/ —-27. —-2f=—2/ 21

22 F 3|-3|- 9{'-—2/[ 21=21 —21i—21'= 20~ 20/ =21'=12
93 |- 3—3/—3~-3—3|—3{=3-3—3/-31—-3~3
24 -25—2—3—51—31——3‘,—3‘-—5'—.&—3(—2'—2
95 - 2l—pl-2—2~2i~2l-2]-2-2|-2-2/-2
26 "‘2"2—2—2*2"2—&—2:"2—2 —2i=2
97 |~ ¢l = 2|=2|=2 21— 2im vt~ 1 1=1
28 -/—z-x——/—/—/n_/g-—/i—/;—fhf—f
99 im flmtl— fi=t = A= A=A =A==l
SO A B R i e A Ay
3 —/-f—-/—f;—-/-/—f—fi—fl—f,—/—/
39 ol ol=tlmfl=tl=ti\~1ti=4'=1— 1 O O
33000000000000
3, | o ol ol of ol 0f 0 0] 0 O] O} @

™~
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The method described does not allow a detailed study of the
change in AR. So it is probably necessary to reconsider the
whole body of I.L.S. material, and complicated computations would
be necessary. In general, we think that this would be very
important if it were done, because the errors were discovered by
us (Fedorov), showing that the method used by I.L.S. does not
allow the determination of the gradual values with satisfactory
accuracy. For our immediate purpose, however, such a detailed
analysis is not important. We could limit ourselves to the
examinatlon of the general path of AR. The numbers giving the
values of Fp corrected for errors in the mean scale of values
are obtained by the formula

F3 = F2 + mAR

and are given 1n a table (see Fedorov).

6.3.7. Nonperiodic Changes in Latitude

In order to diminish arbitrary errors in the following
harmoniec analysis of F3, we must determine and exclude the non-
periodic changes of this magnitude. With this, we compose the
mean annual values of Fq separately for the pairs in the groups
A, B, and C. Their dif%erences from 0".900 are denoted by Sp,
Sps S¢, and are given in columns 2-4 of Table 16 (0".001). The
systematic differences in these quantities can be glven as:

|
i

Sq4 - Sg = d4s = 00048 - 00009 k |

[}]

|

Sqi - Sc= Jdac =-0"005/ - 0001/ k |

Then we reduce the results obtained for the other two groups to
those obtained from group A. Thus we get the quantities:

. ' |
5;3__: -531*446 ) SE:SG-{-AA’C‘;

which are given in Table 16.

As final values of the corrections for the "slow" changes
of F3 common to all palrs, we obtain the following mean values:

’ - ' —

2 .

100

/122

/123

Sa+Ss (1900-05) As= . SAtSE4Se fo5-21) ds- _ SAt St (e9-34).
_ et 3 2



TABLE 16.

n
n -

R Sa Sgs Se AS
o + 28 | 4 43 — | £33 | e 34
/ + J0 # 53 _ +90 —_ # 50
2 + 7 + {0 — + 8 — ¢ 8
> + 16 + 2/ _ + 20 4+ 18
a4+ 4 + 29 - | +29 — | 4+ 35
5 1 +r20  +27 — | +28 — 424
6 .+l |t F A4 4 A 415 4 40
7 0 |— 7% —3 |—4 |—s5 1- 3
8 =9 | —2% — 4 |—22 |— 3 |—43
9 | -2y =7 — & ity | =10 J—-m
045 e 6 46 413 442 440
7 -3 =7 AR _31—2)
2 | -3 =29 |+4 -2 |-5 |~ 9
73 L -A48 -2 = |-y |21 A7
19 o+ 4 . € LAY 4 S 46;+5’
75 0~ & ~ 4 + & |5 & -7 1 0,
/6 1+ 9 | -20 {442 | -7 lez2 le . . /123
71 id7 s ts 1429 lezs |48 | 4ar ]
R__| Sa | Ss | Sc | Sa | sc | 45 |
18 -8 -7 '+ 7 -3 -5 -5 |
79 —f0 | -4z - 4 -2 | -7 | -18 |
20 — 45 | —47 -40 =30 | -5¢  -43
21 -57 -F8 i -43 . =60 ~58 | —98
27 - 57 — =45  —— -6/ [ =39
23 -39 — i-20 ¢ — | -31 . -38
24 -39 — =1 1 _ | =35 =35
25 1 —¢2 — =19 ; — =37 1 =40
26 -40 — -9 . . =28 |- 34
27 -3 = =76 — ~36 | -35
78 ~3v | -4 . =25 . -2¥%
29 -28 | -4 | l-26 |-27
30 | =32 | - -1 ! _ =3¢ ;-36
Mo =35 =5 -39 =32
2. | -47 — -19 | — | =34 | -4o-
33 ‘ Al — /6 |, — | =42 | ~43
3y ~37 — 18 | — | —uS | =4
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These are shown in a graph.

smooth curve and are given in Table 17.

igz2

The values Fy

TABLE 17.
K i Corvections {or group {
7 177 1277 1v | v vy v vaii]ix | X | X7 | Xl
"o |—~30!=30|—30|—30|—30|—30|—30|—50{—301—30 | — 30|— 30!
/ 1— 30| ~30|—30|—30/—30|—30—50|-30 —30|— 30 —30|— 30
2 —3p|—30—30|=301—30|—30—30|—30|—J0|—301—-30|— 30
3 1= 30!= 30/~30 |~30| 30— 30~ 30|~ 30| = 30|~ Jo|~ 30|~ 30
4 |-28—27 —30—30|—30,—~29—29 —29|—29 —28|— 28 —28
5 |-19 |- 18 |- 27|~ 26|~ 25— 25— 26|~ 23|~ 22| ~22|— 24|~ 20
6 (= 5= b= /7|~ 18|~ Si—14|=12i~14 = 10— 9 1= B|— 6
Flrulew|-3|-2]=2|-1 0] ol+7+ 2r2]+ 3
8 |4 8|+81+5|+5 +86 | FE6|+G +6FF | FEIFFi+7
9 1+ 81+8 +8’¢5’4+6 +8=+8f+8\¥8 +8'£8(+8
10 +8 4814848 +8 +8[+81+8!+8 |+8‘+8 +8
11 +8 +8 +8 +8,+8.+8 6 +8 |+ 8! F B +8 |+ 8
12 43 14% 48 +8 +8|+8 +8‘+8 +8 +¥ PRV
13 1+ 5 1+ G i+ FEd |+ 4 +6+é;+5 +6 | 5| =5
te 1+ /1 0l+ 4lry* 3 le2la 72042 4.2 1 |+4
o CorrﬂcfrOns {bk g roup I,
KT ar v Ly (v wxvm[zx{ X |xr [xi1
/5 |- vi-s olo-f}-f—z ~31-3[-3 -«
/6 |— 7 —&—5=5] 5'—-6—-6‘—&;—-524——: «-l‘
/1?7 =5 =4 —8‘—8%—?3—?# -3 -6 ~6l—g— 5!~
18 #1014 41 -4f| 3/l O]+ 2#3 +-<.: +6I+¥ +9
/9 +97 ,‘23|+43|+/o ¥ 16 *m $190420 421 4231425 +26
20 +¢6 -;-418 30 43254 33, +351+37 435’ 4¢o.+¢ﬂ+43 1‘-4)"
2/ 752 458 #50 #5/ +szb 52,453 459 #5U 45T, Y seiest |
22 V‘-S‘D +49:+ 59 +J8 457 456 #5955 #5V +5¢'+53 I+J°J LR
23 rr’-//O £ 39, wswzw% J’-é‘fif"’ﬁ‘;‘ 443463 M? 142 |+ ¢
24 #36 |+3¢ |+3£;+38'+38 438 1#37 | 4371437 '#37 #36 43¢
25 |# 36 #361436 |#36 1 36 1436|436 #36 436 #36:436 436
% 435 435 4361436 £36 436436 436 435 e35lessiess
27 1432 432 #351435 | #34. 4341434 4331433 #33|#33 432 |
>23 430 43032 #32 4321432 1432 31 #31 4341431 £ 30 |

The. values Az are obtained from a

F3 + As are glven in the table (see Fedorov).
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Table 17, cont'd.

29 432|432 +3o}430f+3/*+3?1+3¢ #3443 #371432 132 ,1
30 |#34434 432 32 +32 ;+33.¢33 #3339 434 34 #38
31 |#38 1439 435 1435 1235 1436 43¢ |#36 £ 37 437 £37 #38
32 |+42 !M? 1#39 1439 1440 ;wo!; Lo i# 4:0;+ 4t F4l Fif :Ht/
V33 |493 [443 (402 |1 42 [ # 92 402 [$42 (442 443 443 443 243

3y 443!403 £43 +4]E+¢31#43 4#2|+435¢431443&f¢3 NEF |

6.3.8. Determination of the Corrections for the Declination

We can now consider that the initial data are ready. for the
determination of the coefficients of the nutational terms. If
we put

f-_-z Kyt
¢= X Y (2.25)

where v denotes the right-hand side of (2.6) or (2.8), the problem
reduces to that of the determination of six unknowns. From these,
the constant x can be considered as the error in the declination
for the epoch 1900.0, and the coefficient y as the error of the
speclal motion of a pair in the declination. These errors may,

of course, differ in different pairs.

We can attempt the solution in two ways. In the first, we
would be able to determine from the observations of each pailn
separately all the unknowns((six) and after the composition of the /12
values of the coefficients from the periodic terms in (2.6) or
(2.8), to find the most probasble values. For this, 1t is necessary
to solve generally Tﬂ'systems of eguations with six unknowns. This
method was used by Przybyllok, but his case was different from
ours, because he had to find not six but three unknowns, i.e. he
had the determination of N, n and the phase difference (delay)
which was considered as given.

In the second method, the prcblem can be solved by the
following method of consecutive approximations. First, we find
for each pair separately the x and y, and we neglect the periodic
part (term) wvin (2.25). When this is done, we determine the
coefficlents of the periodic terms in (2.6) or (2.8) by using
the rest of the deviations v, not for separate pairs but the
same for all the observations. Later if it is necessary, we can
exclude from Fy the periodic terms, and repeat the same procedure
for a second approximation. We choose this method for its
relative simplicity.
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So for the determination of the flxed correction x, and
the correction for the special motion of each pair, we have

the system of equations

where K = ¢, ¢ + 1,0 + 2, ... m.

.2}7‘-(4«5, = ;"ﬁ"

be written in the form:

h«;— .
(o = Ot )4+ 2 KY,

and thelr solutions can be written as follows:
o a '~ ) P > E
Yy=p Zfur 9 FLby, Y=ph JEF+9Z Fy

where the coefficients p, p1, 4 are given in Table 18.

™
=§F.¢,
¢

The physilcal equatlons can

Iy

F™ ey
Sky, t Sy =5k Fy
& e £

The

(2.20)

/126

values of the correction (-x7) are given in Table 4 (column 6)

and those of (-y1) in Table 5 (column 6).
Fy - (X7 + ky;) are denoted by Fs and are given in the table

(see Fedorov).

lo4

TABLE 18.

FX10%

9x10?

Py XIQ“

0-24
0-22
0-34
6-34

+16.998
+ 1. 304

+I0.952

$23.152

~-1/8%
-L086
-0.476

-0.983

tH. 293
¢ Q.88/

+ 2.801

+4.926

The differences



The values found for Fg were used for the determination of
the nutational terms. We write this in the form

' |
Fy=a, cos (43 ~a)t b, sin(R-a ) o, cos(Bra)t bz sin (Bra) (2.27)

First we distribute all the Fg values by the phase @ ~ a
and then by the phase @ + a. These phases are expressed 1n
hours and are given in Table 30. In order to simplify the
computations, we proceed slightly differently. All the pairs
formed eight groups in such a way that the mean right ascensions
of the centers of the groups were 0, 3, 6, 9, 12, 13, %8, 21
hours. After that, we obtained the mean value of Fg for the
pairs of each group. These we call M1 (for the 1900-1931 cycle)
and M> (for.the 1906-1934 cycle). These are given in Table 19.
These values are distributed accordling to the phases §§ — a and
¢ + a, as shown 1n the table, and for each phase the mean value
is formed agaln. The results are given in Table 20. By

haromonic analysis ,of the results of Table 20, we obtaln the -/

following values of the coefficients.

o, = - 070027 * 00077
/800-217
az = -0"0048* o002/

a, = — 00034 2 0,00/3
1906-/93¢
: Q2= -0005/20,00/6

b =~ 0"0/08 + 00017 ‘

bz =+ 00034 + 0002/

b= -0 024 200013 |

by =-070015 0016 l

The results of twe series of observatlons agree satisfac-
torily. It 1s true that these results are not tetally independent
¢ f each other, but the observed data common to both seriles
form only one quarter of the entire origlnal material. Gilving
the mean value of the results obtalned from the two cycles we

have:

Fs = _0"003r cos (& -a)-0/0016 sin (B-a)- 0”0050 cos (@ra )+ Q" 000&

and s¢ from (2.10), we will obtain:
it

N= — 000124 20 000/8 L Ly = ~00022 Oooo.?
. : ok

R {

s (erQ)“ 28)

'

S A

14
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TABLE 19.

Oh o r
R cr;f—f: geal Mo | M TR Nk
/ 2 13 & i . & ] g 9
o @ E
o | 14| -39 — Lys| 4t 426 _
1 s lss| + & —_— 12 22 -
20l 3 0 el - L
3972 |8 446 1 _ t9l4_ 42 -
“lutu w9 1 ielw _
5;9 o1 +f/8 . 16 13 -1 —
6181 8,46 146 50 [+B 448
7 r 8l -5 i-23 G4l a2 - 20
f 63'65@45 -f-u |‘3 9 '-22 |-23
v juisia ¢ R - 20
10 ' 31 4 +20 ' +48 | 016 +1 -
02102 20 -3 |23 5 -7 - 16
A2 L0 A e N2 422 ¥4
3 123 o0 -8 -2/ 2012 | -2 -5
ty 122023 4 423 ol 7 148 123
15200210 -3 oz hwinl-4 +12
f6 9.2 -2 +3 lglaz D + 9
1718179 | 428 424 4512 | 47 ~6
18 147 (71 -22 | - 120 -8 i _10
/2 115 f8 . 43 420 42149 —f &9
20 LS 8 4 & A AR AT
2t 3 t4l —f8 L -2 1016 -3U D ~A5
22 042072 L #4295 L o
23 140101 | 428 i’?ﬁﬂx{ — |+ 7
% 199 __ .3 icle .3
25 1 81 &, — 1 #6 LS4l .33
2% , 7, 6. __ -y 0 9
27 585 - =19 Lzlei __ |-
26 v i v =26 sz Jeqz
29 133 | +4 FO0lCl . +¢
3o | f /{ —_ ‘~9'22 T — A2/
oo — t2 124] 3 —_— 19
32 125,23} __ -6 [ Zo| 2 — |+
2020 . l f6 |18/ — =11
. Sklzelzol . 139 frzigz]l 405
' 6" i g*
o [ les| —22 | __ T glao| 4 | _
10 22] 435 N A RS Y- R
2 | 8|2/ ~16 — 410 -0 —
307 A3 =22 | 4. 22| -25 _—
416118, -3 — ;3124 -29 —
s 5|1 -0 | — )/ i2 -5 | __
6 13461 +3 1 #£6 | D49 ~14 |—70O
7 L2 18 —f6 23147 ~26 37
8 |/ |43, -2¢ . -48 5;22;/5!-3/ + 42
G 123 /20 ¢+ 2 :—-3 i 20 . 5 Ay i+ 20
10 22 40 432 1+ 28 | 4943 417 | 443
712009 416 Lt 20 (4877 | der w18
12 20|81¢25 |+ ¢ 16t | 426 | #5y
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Table 19, cont'd.

| Phase ‘ Phase -
R [d-=]lara 4 Mz i [(Rra B | T2
{ 2 3 & ' 5 I @ 2 ] 4.9
" L4 : .94
! il 7 -7 | ~6 Y15k +9 | -7 |
S AN A -2 O ! 8| +17 +35
75 | 5% 44 3 £ 1 138 L7 6
0ty 3 -5 -3 lwle6l ~30 | ~75
737 -0 ~ 7 0 ¢« -9 =7
#1210 <14 -12 9| 3 g -20 + 20
19 14 1 231 +2 -4 pFl2 -3 o
.9 2 -2 79 | 6.0 -3 ~70
2 | B 120 +¢ 5 5125 -22 P -62
220 2119 -1 4210 L 47
235 {8, __ -3 31200 . | -8
2% L4 | w6 12 12 149, __ | -8
23|45 +3 047  __  -2g
2612 =22 23146 . | 423
27001131 44 122 45| | te
28023041 __ | #2103 __ i +28
29 122140 __ 46 9125 14
01209 Ner o dselwl 0 I |
SR RS S S 2 S SR BT ¥
321172 61 __ | - S8 -4 |
37 s ~10 LS R Y
3¢ |15 | 4 £3 131 6 _ -2
| f?l Rk |
| o515 +28 —_ 7 18| -9 !
: I |43 - 8 _— 0 T A —
| 2132 -3 — 1231 6| 42 —
S A G AR I+ B T > S A7 —
o 4le s -7 2003 e |
5123 22 -6 —_ i f9 2 19 _
6 122 .2/ | -30 -1 /81 0| -79 ~20
| 7 20200 -20 ~ty e | 23] ~ 3 1y
S A B Y B N D A Y /28
| 9 B LIF L 416 142 jfv | -9 +32
| B 46 | +io 26 | 13| 19 | 449 +37
f#t | 15 #8 7 i | 18§ +32 * 45
2 04y 113 23 +40 0 | {7 | -%0 ~16
= 3013 @' 48 -4 g | 4 | -35 - 27
A A +34 Il | =35 ~23
1T o 413 0 6§ {431 -5 -32
: %69 -8, -8 -2 514 | -4 —f5
70 F 1 £ + 6 3 10| +5 0
- BE 6 g ~38 27933 3
R R A 2 24 /g | -53 -
Lo | 3 -2 ~59 016 |-6 -7
| w2 r | -3 ~47 3185 | A -9
2| {40 __ | -8 22 3| __ ¥ 37
| o3 ’ o 22 T ' 210 2 + 18
Vo 2y ;22‘ - -6 G101 __ - 20
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TABLE 20.

'

Meotns of the valaes of 5, Heans pf the values of Fs. :
Plase oh‘sfﬁbéfed Qecording o the phases |prase |distributed according fo $he phases
of the argument (in07001) of the argument (in oroor]
B- &+ a £ —~a ] J» +a i
R=0-27 |R=6-34 | #=0-21 |R=6-3¢ Re 0-21|A=G6-3Y |Rs0-21 [ R=6-3¥ \
0* | =4 | =5 | —/5 | ~3 | 12|+ 4| + 8| #3]| +5S
7 - 7 - /3 ‘i 4 o3 |+ 7|+ 6 1 + 4
2 - 20 ~ {3 - /0 -7 1y 0 + 2 -9 -2
3 - 13 -~ g -6 + 4 A + U + 1 -7 + 2
& - N - 3 £/ -5 i - ! + 8 -4 + 5
5 -5 - /5 4 4 -1 17 + 4 | +/3 ~17 + 3
'Y - 16 - /{9 -1/ -4 8 + 8 + 2 + 2 -
7 - 5 - I8 + 6 -7 /9 + 7 +7/5 + 3 + &
8 -9 - 8 -3 +Y 20 -/ + 2 -9 -5
9 - /I3 - 4 -8 0 21 +20 + 9 -/6 -r
Jo -5 - 3 £ 7 +17 22 | -S% + 8 - 10 +2
17 -2 + 1 + 7 + 1/ 23 -9 + 2 =10 -1y
: 3
6.3.10. Possible Case of Approximation of a Half-Year Term, /131

the decllinations and proper motions.
of the influence of error on the gradual value R in the final
The necessity for this comes from

" The Correction Values for the Nutaticnal Constant

According to our initial plan, we must disregard the periodic
term of the change of Fg and then redetermine the corrections 1n

results of our calculation.
the following consideratilons.

which we found for n ought somehow to be increasing.

We return te the matter

First, from the method of determination of R that we used,
the changes in this gquantity can have a false linear behavior;
second, we obtained earlier some indications that the wvalue

Now,

however, the correctlon An seems to be practically equal to zero.
This last result deserves greater attention, because we conclude
that the assumed value of n requires correction since it depends
on the separate values of the correction in the nutational
constant of the right ascension of the pair of an observation

of which the correction was obhtalned.

seems to be a 1/2 year term in the values of AN, and it was
discovered in the results of Przybyliok, Kulikov and Jakson.

This type of dependence
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Because the previous explanatlion of this term is not valid
any longer, we come to the conclusion that thls was caused by
some systematic errors 1n the observations, and it especially
seems to be the consequence of the phenomenal linear changes
of R. We put the difference between the true gradual value R /132

and the supposed R' in the formula of a series from which we 3
take out the first two terms:

L

‘g"_’q,= o ,_’"Ci .' (2.29)

The difference in micrometric readings for the pair with
right ascension a can also be put approximately as a linear
function of time

Moo= PPy e

where p is the precession in the declination. We obtain:

o (R=R) = Cooe + (Crime - Co L= cosa)t+ cff;’
R p
| y (2.30)
= —C-‘,—’:l cos & -
Y

For the determination of the nutational constant, the equation
of the relation takes the form:

|

Yt {yt‘v ‘W_-’U- ‘; : (2.31)

where x and y are as in (2.25) and u is the coefficient of Ng in
(22). The free term u ineludes both the arbitrary and systematic
errors. 3ince we are now lIlnterested in the iInfluence of the
square term only, we use (2.31) together with the followlng
equation:

éy+u 4= ct? 1 ' (2.32)

in which AN' is exactly that part of the correction that is due
to the influence of the false linear behavlior 1n the assumed
R' values. Then the regular equatilons take the form
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riegy v Lev]dn'=c (2]
faly e v s <t (2.33)

¥

In the computation of the free terms of these equations, and
the coefficients of the unknowns, we can substitute an integration
for the sum. We will not give the elements in detail, but rather /133
the large transformations which must be done, and we will not
give the solutions of (2.33) in a known formula. We will limit
ourselves to giving the formula in the special case of the deter-
mination of the nutational constant from the observed data of
the I.L.S. for the years 1900-1915, i.e.

1,8 mt X G . :
7+ G2 cos 2a =03 5in2a 0,3 §r'1'a (2.34)

AN

If we take C; = ~0".003, we obtain a curve which represents
satlsfactorily the half-year term which we find in the correc-
tlons of the nutational constant found by Przybyllok. Figure 4
shows a graph of the funciion of the nutational constant in
terms of the right ascension of the observed palrs for a lilnear
behavior of R (C = 0".001):. As independent variable, we have
the right ascension expressed in.hours; as dependent varilable,
we have the correction in the nutational constant in 0".001.

In the constructlon of the graph, the scale to the left gives
the independent variable (ANe¢) and that to the right is related
to the points representing the values of ANg found by Przybyllok.

Przybyllok found the correction in the nutational constant
separately from each station. We obtained the mean value for all
the stations, and then we separated the pairs into 12 groups and
computed the mean value of AN for each group. These mean values

are gilven by dots in Fig. 4.
!

thk - aﬁng These assumptions are /134
Ly - VA ! e not sufficient to show that
12\ 1L [ \ ons the real case of the appear-
P / \ f[ ‘o ance of the half-year term
- 1o T [ \ 7 *aﬁ( in the value of the nutational
038 \ / 4 20 | constant is an error in the
04 ) Y value of R obtained. They
o4 \ /1 iz only show that such a case
02 | X / g is possible. We have already
e D\L/, 1] \d// A said that 1t was necessary
292 4 ¢ 8 é_M'Migzazzziaq‘ to examine whether it was
probable for the false linear
‘ Fig. 4. behavior in the changes of R
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to affect the results of our computations. The method used for
the determination of AR does not exclude the probability of
such behavior. Checking for this 1s performed as follows:
First, by using (2.28), we again put the nutational constant
of the latitude from Fg, obtaining the values Fg. These are
given in Table 30. Moreover, taking

F6 =224 kipat k%, ' (2.35)

and using the method of least squares, we obtain the following
formula for Zs

22 =f05(pof;"5 f,Q,ZkFGf-szKZFG}; (2.36)
The coefficients of this formula are given in Table 21.

TABLE 21.

;Q - ;bc H_____[OA_{__ ,Hﬂm {

p-2/ +3§"$r§§ - 38.07 45

-

|
0-22 |+32067 | 8116 |+ 352 |
0.3y 4 242 -~ 035 {+ 001 |
6-3% |+ 3331 - O +-0.00 |

We do not give all the values of Zp. It is satisfactory - /135
Just to write that no dependence of these values on a has been
discovered. It seems that the values of R were obtained almost
free of the systematic errors that ¢an be shown on a graph
of a function of time. Relating this to the determination of
the corrections of declination and special motion in a second
approximation, we let out the last term in the right-hand side
of (2.35) so that we can use (2.26), substituting Fg for Fy.
This year we obtained the computation in a larger number of
flgures. The results are given in column 7 of Table 4 and in
column 7 of Table 5. Then we compute

Fi = Fb—-(*zf-ﬁyg)é

the values of which are given in Table 30. 1In Filg. 5 we show
the consecutive phases in the improvements: of the origlinal

data and their preparation for harmonic analysis. We take as
an example palr 96. F1 is the direct result of the computation
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A |
l BREPAR
Afoo ng\ 0 /\ " “‘;rl\\.. y\/ 7 fi&E
NS ARARYNR ! |
000kF, 1Sb i :
LY /‘\ JANA :  from. (2.11). Fp is the result
S { | z reduced by use of the special
&w%¢¥\r\ﬁi o ~ values of the initial declina-
N A X ticn. and special motion of the
800 1 N/ /&3{ + center of the pair through
1 A { . the total period, Fg the same
SRR R {6 15 < 22 2% % 28 30 32 3¢« after the introduction of the
+ 100 T— + ! lﬁ ' correction for the error in R.
r = VAN - ' Finally, F7 gives the wholly
o VN | 1A/ //\ / Aqu\;;fRf\ / complete data for harmonic
N/ A | analysis. The dependent
v | variable is in 0".001.

~100

" 6.3.11. Time Diagram of /136

Fig. 5. - Analysis of the Nonpolar
“Variable of Latitude

From the studies of the
nonpolar variable of latitude from observations in the inter-
national stations during 1922-34, Kimura discovered an 11 year
term.

07018 sin [ @-32243 [+ -+0 )¢ 86° ] fo= 1920058

Although Panchenko showed later that this result was not
exactly correct, we think that we must consider the matter of
its exlistence again, based on more sufficient observations thah
those of Kimura. DMoreover, it would be important to answer .o
a - more general question. Are there some latitude changes of
long period and/or of a period larger than 19 years of nutational
motion? If such oscillations exist, they can be the cause of
systematic errors in the nutational constant, the value of the
axis of the ellipse of nutatlon, and deceleration. There is
also the case of the appearance of a half-year term in the phase.

Some methods may possibly discover a hidden periodicity of
this kind. Our problem has certain special properties that
make the use of some of these methods impossible without some
preliminary calculatlons. After a series of experiments, we
ended with the following plan of solutions. #Making F7 for
the expression the analogue of (2.6)

Fr = 4 cof;uf cosa v B cos pt Stna + Az .fz‘xmzf cosat Bz ycn pz‘ Sh e (2.37)

where ﬁ s the frequency related to the required period b'y the
relation pu = 27/T and placing

113



Ai co;ﬁfw?z sinpt = A4

B cospt+ Bum,u‘i = B ) (2.38)

we will have

.F,‘rr— Acosa+t Bsin @ (2.39)

Because we considered only the long-periocd latitude change, /137
we can assume as an approximation that the coefficients A and B
are constant for a year, and for their determination we use
the usual methods of harmonic analysis. For each of the 12
groups of pairs, and for each year, we find the mean value of
the quantity Fg7. These are denoted by F and are glven in Table 22.
Thus for each year of observation, we obtain the 12 F values from
which we find again for each year separately the coefficlents A
and B, The computation follows the usual method of harmonic
analysis for 12 dependent variables in which we assumed, for the
sake of simplicity, that a takes the values 0, 2, 4, ... hours
and not 1, 3, 5, ... hours, which 1t actually takes. So we
do not get coefficients A and B, but two other magnitudes A'
and B' related to these by the relations

Ao d7cos150— B Stnl®= Q996 A7 - 0,259 8’} j
' (2.40)

Bo A’ sin 504 R o5 I5°= 0,259 A7+ 0,996 3

The results are obtained initially for the 1900-~1921 cycles
and 1906-1924 cycles separately, and then they are compiled.

The wvalues for A' and B! are expressed as in Fr in 0".001
and are given in columns 2 and 7 of Table 23. We use this part
of the original data for the deftermlnation of the hidden periocdi-
cities in nonpolar latitude change.

.
!
Ls]
a0}

We will use Fuhrich's method as that which most approxi-
mates the condltions of our problem, rather than the usual
method of Schuster. Pollak used this method in the ilinear
periodle analysis of the motion of the pole and obtalned the /1R0
formula and plan of calculations from his papers, and especially
the computation of the automatlc correlation of the coefficients.
Similarly, the second coefficients that we have denoted by y"(&)
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and y"(B} can be so understood as being of sinusocidal form
that the frequency of the largest nutations are accurately
determined. For A' this was found to be equal to 2096 per
year; for B', 21°U4 per year. These correspond to periods of
17.5 and 16.8 years.

S %
3 In order to discover other
:ég . 1 REE ! periods, we start again from
s on LY O A the data of the largest periodic
o ; | Wik terms. Thus we put A' and B'
.0 T T K in the form
$.08 ] 7 .
NN e 4’ R+ w1z 5in Ma R 4w
* = [+ 4 -
-0z \ i 7 Yy alal i ? COJFN z ’?4 }
Lo~y , : L ' .
- 06 T ,L- .  B= oy, cospy R+ mg dinfy Rruy
S BN -
B i W R R f where u, = 20°6, up = 21°4. The

values of the arguments ugR and
upR are given in columns 5 and
Fig. 6. : 10 of Table 23. After this, we
find by harmonic analysis the
following values of the coeffi-
cilents of the pericdic terms.

My = 07002/ + iz = 0”43

L

P, = 0 0096 Yy = 00086

and finally the values of the remalning ug and up that are gilven
in Table 23, columns 6 and 11, in O".00l. These seem to be arbi- /141
trary, so that the contlnuation of the linear periodic analysis
would make no sense. Thus we have succeeded in the discovery

only of a nutation of period near 17 years. Although Fuhrich's
method does not allow us to compute rigorcusly the precision

of the values obtained, an error of 1 or 2 years is very probable.
Hence we can recoghize the oscillation taken together with the
nutational term with a period of 18.6 years. So we have the
justification for our reasoning, i.e. that other terms of long
period in (2.37) including the ll-year term do not appear in
nonpolar latitude change.

' 6.3.12. Determination of AN, an, By.and B> (8' Approximation)

So far we have used A' and B' whichwere acceptable Tor the
study of periods. For the determination of the coefficients in
(2.6), 1t is necessary that we use A and B computed from (2.40).
The results are given in Table 24 in columns 3 and 4 for 1960~
1921 and in columns 7 and 8 for 1906-1934. The rest of the
columns give the remaining ug and up (in 0".001).

117



TABLE 24. /142

/300-1921 _190g-7834 "

K16 "2 T A | 0l Us | A _| B [ val s
L.l 2 j_. 3 & .5 t_.e p...® _|__&_ 2 10
o 1250°|—35 |—-8 |-/ (=3 | — — —
g 1232 Lptr 12 s 2 s | | —~ | —
2 {02 1405 | =3 1445 \#f0 | — | — | — | —
31495 (4 7 (-18 |-6 |- 3 [ A S SRR
4 473 |— 3 |-28 |- F =13 ) — | — | —

5 1454 =8 |=73 1=20 (# ¢ | — | ' — | —

6 | /35 |+ /5 0 | +47 |#/1 |+ 18 =40 #2722 |~ 2|
2 L 45 l¢ 7 \=46 |440 (=40 f~/0 |~ 26 | 0 -2/
8 | 9 |- 5 |-/8 |# 2 |16 |-22 \~4/ |- 8 |- 9.
9 27 te 2 |gi4 1+ 6 (440 |=30 |+ 1 =43 |- /i
0 57 [-4 ¢35 #5 |-3 |-70|-8 |+ 8 [-13,
il 38 o8 (443 1= 9 |47 |-wB 413 =31 |4 5
2019 - 4 (42 |4 4 1+ F |- 2 |F20 412 10
73 1359 |- 5 |+ 18 0 143 4 & |+ 9 #4143 =1
G {340 |+ 42 (423 (+/4 # 9 ~ 2 £ 10 i# 2 o
5 1307 = 7 lg 4 1= 7 -8 |+ 3 1+48 |+ 3 |+ 8
61300 ol 2 |-4 |-6 D 40 l- g 1+ 4,
7 1282 U4 4 (=43 |- 2 |-46 I+ 8 (- 3 i= 5 |- 6
% | 263 |+ 14 |~r5 |+ 6 | =13 1= 2 \+ 74 |~48 1+ 2
9 | 203 le 36 \esg |4 27 |#23 |+ 2/ |-3 |+ 3 (+ 7
%0 | 22¢ |+ 1 1= 22 2 ot |+39 |45 |+2/ —8 !
9 205 |+ 7 -9 |- 4 [T (#0515 o (-6
37 | 186 — — — ¥ 8 |- F =3 |43 v
23 | 167 | — | — | — __%J'l-ifi-.t{ 6 |
24 | fu¥ —_ —_ _ — l+ 2 [+ 7 1+ 2 |+ )
2% | | — | — | — |- 0 - 4 |+ 7 ]
26 109 — _ — — -2 - 8 -42 - 4
SO N N R D R P VS ARV -
% | 6 | — | -l | — |-87 (t M6 - F |+AF

29 57 —_ —_ —_— —_— - 9 (+ {f F 9 [+ 3

30 | 3 — _ — . i=12 + 3 |+ ¢ |-6

31 4 — _— —_ — i+ T #F 3 1+ 20 (-7

21353 0 _ | s 2 sz 410 -3 ]
3 | 333 — —_ — e 5 19 =43 =7 !

YR 7775 R R R B PR V- B S P

118



Based on the results of the previous paragraph, we put

]

A= A; cos B+ A2 5iy7 S8+ Uy Bz BscocRr Brsin Bry, ~ (2.41)

7

and by the methods of harmonle analysis, we find the coefficients
A1, Ap, Bp and Bp and then the remaining terms ug, up. Thus we

obtain

w7
/200-2/¢
” ” J
A =-0,0057 700034 , Az=~000¥3% 00034 [‘

A, w fo"r08 20 0021 . Bz = ~0l000F10"0027

.
[
=
|8

L1906 - 34

Ca,

At =~ 00097 * 0003/ Az - .0"0155 % 07003/
Bi= +Qoros5 + 0'002¢ Rz = -0000% + 0002/ |

From this, using (2.10), we find for 1900-1921

‘_J;y « oo.rf 00039 4y 00004: 400005 /5;_2 §+17

and for 1906-1934

AN = 00405 * 0’ co2f By = -0,0008 # 00003 [fi1=3/8112 /49 = 0/2% 0] 71

These values agree with those given in Chapter 7.3.9. From
these results, we are led to the conclusion that the delay in
phase 1is speclal in the nutation of latitude. Also at the same
time, these results glve certain indlcatlions of the general
turning of the ellipse of nutation. Usually in the construction
of this elllpse we use a system of Cartesilan coordinates on a
plane touching the celestilal sphere at the mean pole of the Earth,

which is also the coordinate origin. ' .

The axis 0¥ has its direction along the mean equinoctial
colure from the pole of the ecliptic and OX has directilon along
the colure of the celestlal equator toward the vernal equinox.
Then the equation of the ellipse of nutation can be put in

parametric form
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-Z=.f1N’CoJ-$, yéﬂszhﬁ onoy @ = 90% G,

Because we have reformed the usual expression (2.2) to
(2.3), it 1s necessary to substitute the following expression
for the previous one:

x= nlN Ca!(ﬁ;/g/} , y=Nsin /¢_(gg) (2.42)

‘
[

From there, using the formulas of analytlc geometry, we find the
value of the angle between 0Y and the longest principal axis of
the ellipse of nutatlion

“w ]/:—-—j- [ﬂl "'42)

I~nt

If we substitute the values found for the constants

| /144
V= 638152y I‘ -

Hence, the positive end of the large axis of the ellipse
of nutation is divided by the equinoctial colure by 6'8 toward
the vernal equinox.

The theory of the rotation of the Earth has not yet glven
any indications of such a turning of the axis of the ellipse of
nutation. This gives rise to some doubt about the results
obtained above. We think, however, that it will be useful to
keep thils result for a further development of the theory, based

on our new data, for the internal structure of the Earth.
" Substituting the arithmetical values in (2.8), we cbtaln

| 46= - 6850 Cos a.sin (6 -3'8)+ 9,198 sin € cor B | (2.44)

The new value that we found for the nutational constant is
one of the results of the solution of more general problems
from the determination of the coefficients of the main terms
of nutation and the delay (difference) in phase. Until now,
the theoretical value of the proportion of the axis of the
ellipse of nutation n had always been used and the initial
phase g7 and B» had been taken to equal zero. Thus there does
not.exist immediate benefit from a detalled development of the

o
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results cobtained on the basis of the hypotheses mentioned.
50 we give below a sum of the values of the constants of
nutation for comparison.

" Table of Results

In connection with these results, we find it necessary to
make these notes. Newcomb's value for the nutational constant
is the mean value of the 27 values found by other authors. Of '1/1#5
these ten, and not one, as was incorrectly stated by Idelson,
are smaller than Przybyllok's value, and five are smaller than
curs, The accuracy that Kullkov claims his values have for N is
overestimated, because in order to find this value, he considered
results of different methods from.the same original informatiocn
as independent of each other.

T. Hattorl used the same orilginal data for the determina-
tion of the nutational constant which we used for the solution
of most problems (of the general problem). He made his work
known only after our computations, which agreed satlisfactorily
in the cholce of methods of solution and in some special
problems arisling in the reduction of the orilginai data. For
example, Hattori gave his latitude 1n the CG system, and in the
same formula (1.1l), and found the nonpolar variable of the lati-
tude in common for the three stations. But this is exactly
that magnitude we have dencoted by Fj.

Hattori did not include the slow changes in latitude
common for all pairs, and he did not try to determine the errors
in the gradual wvalue. But we saw that sometimes this fact becomes
apparent. We also noted that in four cases the corrections
in proper motions do not agree with those of Hattorli. For this
reason, we glve the values of Ay (the ones found by us are in
parentheses).

Number of pairs Epoch
24 1528.0 ~0’003 (-0]00s)}
35 | 1903. 0 -o%0zz  (-0’0I6)
72 /908. 0 -0.004%  (0.00%¢) |
86 1917 . 0 0.008  (bvY003)} |

i

For the determination of the constant of nutation, Hattori /146
used variocus methods.
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In Chapter 7.3.11l, a first step was made toward a separate

determination of the main nutational terms. Later Orlov changed

the determination of these coefficlents from the material of
the observatlons at Pulkovo with a zenith telescope from 1915~
1928, and he found that no correction is necessary. Orlov's
research gave rise to some doubts at the beginning. As initial
conditions he used the instantaneous values of latitude gilven
by Koral. For the determination of the correction for the
graduated value, Koral applied -- as we did -- the method of
comparison of latitudes which are taken separately for pailrs

of positive and negative zenith distance. But in the pairs
selected, he did not take into consideraticn obtaining results
which are generally free from the probability of errors in the
constants of the nutational terms. This could lead to the con-
clusion of weakness in the 19th term. Actually, 1t seems that
thls does not occur. Although in a few cases, the change 1in

the mean values of cosa and sina for groups of opposite sign
zenith distances was taken into consideration in the estimated
values, these ¢hange from year to year, and . nyoct. 8¥S— i
tematlically the same as the change of the sign.

The only effort toward investigating the subject of the

~exlstence of phase difference in nutation was done by Morgan.
He analyzed the observations of parabolic stars in Washington
from 1903 to 1925; he used equations of the following form:

~

b6 = ~ /0037 Q° Stz B+b'cos 8 Jdw & (b'in R ~003¢ a'cos 63 ) #4Y \

1

where a' and b' are constants of reduction. '(2+6) has such
a form 1f we substitute in 1t (2.7) and take

»

4w =0 Br =Bz = - 480

3

From the observations of declination, Morgan found that
48 0'.0 + 4.8 and from the right ascension cbservations that
Y 13'.2 + 3!'.6. The difference between these two values
together with the mean error of each one of them gives rise to
doubts of the reality of Morgan's results. Morgan himself had
the same doubts, so he dld not publish the results of his
computatlons and restricted his announcement of them.

The constant of precessicn, the ratio of the masses of the
Earth and the Moon and the constant of nutation are connected
as 1s known by one certaln relation which is determined by the
theory of rotation of the Earth. By using this relation, we
are able to find the theoretical value of N if we assume that
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the two other constants are known. The value determined this way
1s greater than the one determined by the observations.. We can
also note that the new value is different from the theoretical
value by a quantity two times greater than the value 9".210

which was taken in Parls at the 1896 meeting and which has been
applied up to now in the reduction of the apparent position.

6.4, General Remarks /149

The chapters discussing the examination of the observations
cover essentlally two parts and deal with two phenomena. The
development of all the observations which are concerned with polar
motion would also indicate the influence of this phenomenon on
other phenomena. This would be very useful for those who investi-
gate polar motion, because they probably could. get results which
are not yet known and because the research up to the present would
be applied, and this is the objective purpose of an applied
science. We are not going to investigate these in detail. We
shall, however, give a brief summary.

Astronomical data are composed of the "ancient' observa-
tions (1000 B.C. - 0), the new ones (1680-1950) and the modern
(1950 - present). We separate the last ones because of theilr
homogeneity which is necessary for statistical study. It is
important to mention that astronomy was developed by the
Babylonians and the Toltecs (ancient people; from South America).

The Greeks gave the first scientific basis for research,
while the previous peoples continued the development of
astronomy with the help of astrology, sorcery and prediction.
However, the Toltecs had the most complicated and the most
accurate calendar in history, more accurate than the Gregorian.

The history of polar research appears to be large and com-
plicated. The main result (Munk) is that the problem does not
have a solution, but is rather a progressive approximation.

From indications of dynamics and reology, it seems that /150
the easiest way 1is to determine satisfactory forces which act ,
on the Earth and thus predict the future positions of the pole. More-
over,in order to solve the problem of the pole, we must take
Into consideration many other factors, such as the deformation
of the planets and the Moon, the sclar wind and magnetchydro-
dynamic¢ phenomena of the outer portion of the atmosphere due to
this wind, the clusters of magnetic fields, and all the phenomena
referred to already in various chapters. It is the resultant of
the other sclences.

123



124

TABRLE 30.
Neolral Fi D I Fi £o Fx | Fa | F7
Sz 5| 4 '} 3 & i 7 & 9 {0 |«
Poir
6 | & 9%|+882]+18 |+ 989 |# 935 11090 |ra|erz]re
7 7 4 856 712 962 | @38 962 |-22|-1%i~-2y%
§ 161 61 897 1% 9e9 | 94 | 979 - 8i+ 3-/0
e 45 AT 100 f03f 67 975 47 - 3'-4F
10 13 3| %28 9 | foz8 | 98¢ | 992 | o '+f3i- 1
# | 2. 2 892 88 | 98 | %6 | 9 |-30|-/8-31
12 0 ¢, 4| 929 | /s | /089 | 030 | 033 |#40 |£ 51 # 39
13 123 0| 920 | (56 | 1083 | ‘ooz 4007  F +I8+ 6
4 22122 |.927 | ¢58 | fos0 | 1002 003 # [ |+ 3| O
75 L gr | 2y 9 | 60 - gorr | 985 . 8¢ -23_95-24
6 [ 19120 | 980 | f62 | 1435 | 1050 008 +4f 43y 40
17 | 18 i 18 | 9uo | sev  HGr | 1030 ¢ jozs 445 1p 4 1HAF
g | 7 17 : 875 66 | 1039 918 | 988 {-2% -3¢ -%4
9 | 46 | 6 | 859 768 | 1024 9% fo0r -13|_27|-13
20 | 4y | 15 | Boo | g0 | 964 | 98 | 9k |-43 -5 (-43
91 | 13| 13 261 772 . 537 917 949 |-97.-62|- 51
20 | 12| £7 | 737 | 268 1 /007 | foor | forr (¥33+75+53
23| 4 | 1| sy | 260 | j023 | 4022 | 1062 ;38 433 |#38
|9 |9 Fe | 252 L ot | 015 i 1081 1424 14326 2T
2s g8 7B 24y 999 | 1001 | o33 (¢ P12 |# 68
% | 70T 84 | 23 | fhs | f0h7 | /087 |+30[¢38 |+ 57
27 3 & it 278 qxy 977  fopg .25 |-74 -2¢
28 | ¢ |4 | www | 2w | %81 %Y | 99y |43 |-29 |42
oo |3 3 | 787 | etz | 995 | 998 [ foip |-r0lp 3 |-9
30 ! 2 &12 204 w015 | 018 052|477 |+ 2f |12
Jf o o 841 % 1003 | 005 043 \— £ |43 1
32 |43 23 | &o3 188 952 890 | {032 |-45 10 |-13
3z 122 | 2 8yt 780 049 | 1924 064 | AY L g (476
3y | Q0| 2t (ot (+£A2E (4 F [ +872 (e |3F g1 -3
Pair 2
o |76 | 17 |#867 |£106 |+ 93 |+939 |—~909 |-60!-57]|-¢7
£ | fY | £ 909 104 | 007 984 954 |18 1-2/{- 9
o 143 L v | 940 | £02 | /004 | 989 | 959 |-/1|-22 |12
3 2 1 {3 | 818 {100 977 a5 939 |40 48~ 39
Y v 930 g8 {027 | /023 Y5 [+92 1+ 2 ]¢ 9
T g {0 | 890 4 983 982 94 |-23 |-32 |-30
1 8| 7| 943 96 | 048 | FOS0 | fOUS [+T6 1460 [+ 60
7 7 | 8 904 Gy 997 99¢ 995 |+ 2 |+ 9+ 7
& |6 | 6 | 9% 92 | 2y | 020 | 1028 |+32 443|438
g 14 5 | 933 go | f023 | FOIF7 | f025 +25 [+3¥ £33
10 304 | 939 B8 7033 | f037 | douo 2 3T 449 146
4 | 212 | gy | B | 383 | 98¢ | 992 {4 -2|-¥
{2 0 f Fyf 63 1012 1020 077 |+ {7 1425 |+ 6
/3 (23| ¢ G5 £o 100/ 1071 1026 |+43 | L4B |+
0 | 22 23| 913 55 g3 | {05 | fpop |-fD I 8 |+ 3
o | 20| | 929 50 2G| 4075 | q02¢ 4 f |- 3 |#45
¢ 9 . 70 | BRY 45 927 984 G893 (-4l i-54|-29
17 5 | 17| 957 40 Q9% | 4065 | toge w33 1-23 (249
18 | £7 | /1 | Béo 35 593 grs 985 |- 45 i-57 |-28
19 PAN A 1 88¢ Jo 90 oz 1 10729 (-5 |17 |+#14
w || 17| 827 25 | BYe | 9us | 99y |-43|-5%-23
o 13 | sy Vapog 1429 433% Wehy y4opr -39 -49 ~/8

/148




On the other hand, research on the phenomenon gives infor-
mation on the original shape of the Earth, on the surface
distribution of the solid mass, on the magnetic field of the
Earth, the elasticity or plasticity of the Earth, and on the
inner part of the Earth and other things. According to this,
we can estimate the extent of research which remains to be
done, and sciences like reology, theoretical mechanles, paleon=
tology, and others, from which we will ask information and
to which we will give suggestions, will be utilized.
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7. GENERAL INTRODUCTION TO THE THEORY OF ELASTICITY /151

7.1. A General Introduction to the Theory

The presentation of the phenomenon and the method of obser-
vation constituted the first part of the present paper. The
theory will be the second part. From a more general point of
view, we could say that in the first part we followed the
analytical procedure, where we obftained our conclusions from
the observations made. In the second part, we will follow the
synthetic procedure, i.e. we will try to find that model of
the Earth from which it is possible to predict, according to
phygical laws, the effect of the influence of physical forces
on the Earth in such a way as to agree with the observations.

There are different theoriles, all of them based on the
behavior of the Earth under the action of the rotational forces
as well as of other forces due to different phenomena (meteoro-
logic, etec.). In general, a body can be considered as rigld,
which never happens, or plastic or elastic. If the deformations
are very small, it can be consildered as rigid. This is thei
case with the Earth, and for thils reason the first complete
theory whlch was developed assumes that the Earth is a rigid
body. The more recent theory, which will be presented in detail,
assumes that the Earth is an elastle body obeying Hook's law.
Even today, this theory is not completely satisfactory, and
new considerations are under research that will be referred to.
Because the theory is based on the elasticity of the Earth,
it was necessary at the beginning to present a few points
about the theory of elasticity. This was conslidered necessary
because of the future use of different concepts, and because
of the fact that in this way we will have a more general point
of view for our study.

S~

Throughout the presentation of the theory, tensor analysis
i3 employed; therefore, 1t was necessary also to glve an intro-
duction to the methods of fensor calculus. We also tried to
combine the theory of elasticity with tensor calculus, which
was necessary for compactness of presentation. All these were
presented in detall, taking for granted that the readers
would be faced with the same difficulties which faced the
writer initially.

The development was also based on the concepts which
wlll he used below.
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7.2. Introduction to Tensor Analysis

Tensors play an important role in physics, including the
general theory of relativity and the electromagnetic theory.
Also, one of the most important appllcations of tensors is to
anisotropic solids.

As an initial example, we will consider the flow of
electric current. Ohm's law can be written as

j = oE (1)

where j is the electric density, E the electric field, and o is
the conductivity. If the medlium is isotropic, then the conduc-
tivity o is a scalar quantity, and for the x component ,we have,
for example,

J1 = oE1 (2)
But 1f the medium is anisotropic, as happens in many crystals,
the electric density may depend on the electric fields..of all

three directions. Considering a linear relation, we can write
Eq. (2) as:

(3)

and in general Jr =64 £t 62 b2 465 &35 -

s

For three-dimenslonal space, the scalar conductivity ¢ is
glven by a set of nine elements, oy

' [
6” 6 2 6_' { 1
82, §22 €23

- 63/ 632 €33 a,
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This gset of nine elements forms a tensor. For any case, a set
of nine elements does not necessarily represent a tensor, and
a preoof is needed in order to conclude that it i1s a tensor.
Therefore, a tensor is used for quantities which need nine
functions for thelr definition in space (l1.e., when we take
account of many influences).

A quantity which dcoes not change with.'a rotation of the

coordinate system, i.e. which is invariant, is called a scalar.
A quantity whose components transform according to the formulas:

Jf{’ = Qyp Xy #+ Qpp L2 ‘
TXF = Qae Xt Qo Xz "
(1like the components of the distance of a point from the origin)
1s called a vector. We observe that a different definition of
a vector is given from that usually known, based on the trans-
formation of the components according to definite formulas of
rotation. Exactly this preoperty of transformation 1s. adopted
as the main characteristic of the definition of a vector. 1In
the above definition, we can either use the formula of the
transformation of the components (or computation of differen-
tials -+ contravariant vector) or the formula of the transforma-
tion of basis (or computation of partial derivatives - covariant).

The difference is that we have either 8xj'/3xj or 3x;/5x;'. /7154
Since 1in a Carteslan ccordlnate system the two expressions
are ldentical, we wlll have

91} = Oz‘j = al'j 1
S’zj CF A .

where n8ji, are the directional cosines.

The tensor is a general concept. Thus, a scalar guantity
is considered a tensor of zeroc rank, and a vector, a tensor of
first rank. Tensor representation is required for quantities
whilch, in order to be deflned, need nm arithmetic quantities,
called tensor components, where n = number of spatial dimensions,
m = rank of the tensor. A tensor is a quantity independent of
the reference coordinate system whose components transform
according to a definite transformation law when the coordinate
system 1s changed, and this transformation of the components does
not imply a change of the tensor itself, but comes merely as a
result of change of the reference coordinate system. In the
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Cartesian system, we define a tensor through a transformation
relation of the form

)

A7 = 5 Qi are Awel’
I\/ e f] J—? \\
Qyxe
(D%f/

where ) , Gje=

Wk DX
QxS
Aty = derived components, Axg = glven, ajk. &3¢ = transformation

law for rotation, e.g. cosines; see Fedorov 6.7.

The above expression 1s a generallzation of the previously
‘given formula.

Application -y

o
Xy -y ) ‘
Given the matrix 7= r? ly . » We will examine whether

it is a tensor. According to the above formula, we will have

¥
T = Qe Xse k€
wré
Kal2
g=1t

If the rotaticn is given by 6, we must have Til = -x'y'. We

wlll find out if this component obeys the law of transformation.
In terms of the unrotated coordinate;, we have

b

™,

~ Ny = =Xy == (2c0sTtysin D)~ r5inG+y cos§) = -

5
= - Jeosry - cosd. sindy?t Jind cordx? ,t;,};z.ij/-_;‘\

= Qpy Qpp Tt0 # 0y Qpy Ty Qre Ayp 72) 4 Qg Ops 12z

-

(For regular position g j x change I change, for example, 12 - x2,

J
21 = ya). The a are the directional cosines for a Cartesian

system. We therefore have an ldentity; thus, the matrix is a
tensor.

We have thus far defined a tensor and have shown how the
definition is used in order to find whether a quantity 1s a
tensor or not. The following propertles also come from the
transformation law:
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1. If at a polnt the components of a tensor are all zero
with respect to a coordinate system, then they are also zero
~Wwith respect to any other coordinate system.

2. If the components of a tensor are 1dentlcally zero with
respect to a coordinate system, they will be identically zero
Wwilth respect to any other system.

The above properties are fundamental for tensor analysis.
Thus, we try to express the laws by equating two tensors or by
equating to zero one tensor, because then the change of the
coordinate system does not change the expression of a law or
of a property. Therefore, during the analysis of these proper-
ties, we try to construct a tensor of appropriate order and to
select an appropriate coordingte system. (The relativity theory
of Elnstein igs based on the above,)

7.3. Introduction to the Theory of Elasticlty /156

In a body in equillibrium under the actlion of external
forces, internal forces are developed which keep in equllibrium
every 1nfinitesimal element of the body. By changing the
cross section under consideratlon, the internal forces .acting
on it also change. They also change in direction and positidon,
depending on the position and direction of the Infinltesimal _
element on which they act. The internal force per unit area s
is called stress. We analyze the stress in a component ¢ normal
to the infinitesimal element, called "normal stress," and a
component r tangent to the infinitesimal element, called "shear-
ing stress.™

Since our cobject is the Earth, the introduction to the
theory of elastlcity will be given in & form appropriate to our
obJect of interest and concepts which will he used below will
be mentioned.

The angular momentum of a body with respect to an arbitrary
point O i1s the sum of the angular momentums of all material polnts
i of the body with respect to 0. The angular momentum C:L of
any polnt i of mass mj is given by:

Gr = A A Uy (1)

The velocity vi in terms of the velocity of the point 0O and the
angular velocity will be

=
\4:.&
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U= ‘('o) %a}'AF'f. } A (2)

The angular momentum G of the body is the sum of the angular
momentums G4 of all 1ts material points.

iy byt e (Fw (EOIR T )

—~ G |

where waiy = ani;‘:_f

_ We can express the angular velocity

w a8 well as the distances ri in terms of
thelr components with respect to the«three
axes. If ey, ep, e3 are The unit base
vectors

i Mo - - - H - i

| @R A L2000 & 1L s 6 1 0y, 6 v 2,

Substituting in Eq. (3), we obtain

! — = ~ s 7 a 2 -~ - - \

- .

v (4)

:
i

(X iy wa t 30, ) (2, 642y, 6, #4363/

Introducing the moments of Ilnertia

;,{ = Sin, (,zi-?_f.f,-;) D2z = L39i (2057 )  Ass= Tmi (174 1,-:’):

and the products of inertia
B3N W,

M2 = )2y = '“_é”’" Yirdiz , 9232 fJag = -Smei Xo, Xé3 , Jar=a13=~8mi Gy ey

relation (4) takes the form (5):

G=mbe AV, + Cdy s+ dndz ¢ Jyyw;)ért OzgwﬂJZzﬁJ?*?z,rd’.?jéz *

ot

+ (93:%*23;%*?31 “-‘.sjésf (5)
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Equation (5) gives the angular momentum of a body in terms of
the moments and products of inertia with respect to the system
Ox1xp2x3 and ¢f the projectlions of the 1lnstantanecus angular
velocity with respect to this system. If point O coincides with
the center of mass - ry = 0, and if polnt O doces not move

-+ U(g) = 0. In these cases

~ . : : . : o (8)
=> G = (6 + 12 wa+ 13 Wy ) er + (-_221 Wt J22 Wzt d2z wy) e, f-ég;ﬁa};‘zfjgwﬂ‘?a A “

If the projections of the vector G in our system are

- - ~—

G;, Gz, G3 ~>» G =68 +%2 €24 Gjé_.g! (7)

From (6) and (7), we obtain the linear system:
Gy = A Gy + A1z Wz 43 Wy ‘

62 = 92{ &y ¥ 322 C&’? + (7?3 Oz : (8)
i
Gy = ;73!611 # Azza2 # d3; @3

The entries of the matrix of the coeffilcients of wj, wp, w3
of system (8) are the components of a symmetric tensor I of
second rank (A{y = Xs4) which is called the inertia tensor.
Therefore, the angulgr momentum with respect to the center of mass /158
or to the fixed point will be

G At dez A3 s

G |=|da 3z du 2 7%'53[&3," (9)

G3 431 d3¢ 432 AR

We alsc state without proof that if the inertia tensor is
~given for a polnt O of the body with respect to a system Oxixox3,
we can always find a new coordinate system Ox'1x'px'3 with
respect to which the ilnertla tensor is diagonal. That means that
the products of inertia are zero and the diagonal elements are
the moments of inertia with respect to the three axes Ox';, Ox'g,
Ox*3. The directions Ox'y, Ox'p2, Ox'3 are the principal directions
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and the characterlstic roots of
I (elgenvalues) are the principal
moments of inertia.

We will now examine the
stress state, ' first in the plane.
The plane stresg stafte at a
certain position (x,y) of the
disk 1s completely defined by
the stresses ox, Txy, X
of two cross sections n%rma{
to the axes x,y. Given the =«
above quantities, we can obtain
the stresses og, ogy, 0p, ©

/ \\\ : acting on crossd sectlons parallel
| 6 iy , - to the axes £,n of a new coordi-
w th e nate system rotated with respect
& to the initial system by an -
angle ¢.

The balance of moments. of momentum yields
' 7 . A/ =-O\
o gy oty = (P )7 % =0

il.e., the relation of Cauchy

Tyx = Ty (10)

We obtain the expressions of the projections of stress in the
£, ndirections of two prisms (above) if it 1is taken into
account that

s Ay -
f > Ol = ¢ ¢
~ §eong / =dZiing /and then:

Gy = &x corp # 6y Jivig =2 Zuy Jin G 05 ¢ i

j
|

&y = Gy J[Jj‘zﬁfsé/ CDI?{J -~ ggﬂy J{}yﬁ cos g ,’ (11)
f
VT = (63 ~6x) Stng cosg - Cyx éaf?pnw‘hfg)/

or 1f we use the angle 2¢, we have:

g}'

b _ : (12)
ﬂ €, = ?/{le égju5fsx-~€3) cos g + («-rxy}.flh ‘6 ’,’

—Zns 4 laey) i 2% 4 (rag) it
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Equations (11) and (12) give the stresses with respect to
the system of axes £, n in terms of the stresses with respect
to the system (x,y). Therefore, the‘symmetriq‘matriﬁkdefines

. ‘6*' . exy/ .
Cyx Sy
Observe that for the definition of the stress state 2° elements
are required (two dimensions). On the other hand, the matrix

(& ‘

Z'J‘j
to the equations of transformation of the inertia tensor for
rotation. Therefore, based on the given definition, the above
matrix represents a symmetric tensor of second rank of a certain
quantity at the point (x,y). Since this quantity describes the
stress state at the point under consideration, it is called the
stress tensor (i.e. Egs. (12) give the transformation of the
inertia tensors. On the other hand, the one matrix is derived

from the other by a similar transformation. Therefore, as was
shown.in the example, it 1s a tensor.)

completely the stress state at a point xy

6
th/)/ is obtained from Eqs. (12), which are identical
y /

Correspondingly, we have the fact that the nine'entry
symmetric matrix

6X TYX th 1
ZxJ 6y z"'ﬂ

defines completely the stress state in space, and is called the
stress tensor.

If we choose as directions of the axes the three principal /160
directions, the stress tensor 1s diagonalized:

éx O o

0O & O
o O 62 fr

Closing the introduction to the theory of elasticity, we
must point out that the main advantage of the tensors is that,
knowing the stress state for one cross section, we can find the
stress state for any other cross section (it can be proved).
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The deformation can also be represented by tensors. If we
consider the strains ey, ey of the sides dx, dy of an orthogonal
triangle and the change of the right angle Yxy of this triangle,
the nine entry symmetric matrix represents the strain tensor.
This can be proveri, as we have done before, since it obeys the
same transformation laws.

i
€Ex ;.',!]/xy E’]sz J
Fumy & H¥yz|
ot Luge €2 | |

We have given the definitions of stress and strain tensors,
considering a material point of a body. Macroscopicdally, we
consider that the Earth -- at least in the newer theory -- deforms
elastically. By.this we mean that 1f the external cause of
deformation is eliminated, the Earth regains its initial (before
deformation) shape. This helps us to find the inertia tensors, .
assuming that the principle of superposition holds. Thus we can
obtain for an elastic Earth the inertla tensor as the sum of a
constant inertia tensor Iy of the undeformed Earth and of T,
accounting for the deformation. In this way we can find the
change of the inertia tensor due to deformation (see newer theory).
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8. CLASSICAL MATHEMATICAL THEORY OF POLAR MOTION /161

‘ 8.1. ~ Introduction

Before we try to develop the mathematical foundation of
polar motion, we will define certain concepts which are necessary
for the understanding of the followlng.

l. We say that a system of material pcints constitutes a
rigid body when the relative distances among all the material
points remain constant durlng motion. Considering the motlon
of a rigid body, the projections of the velocitles of two arbi-
trary pelnts on the straight line passing through them are equal.
Thls is a characteristic property of the motion of a rigid body.

2. In order to determine the position of a rigld body which
moves freely around a fixed point O (in general), we can make
use of three angles ¢, ¢, 8, which are called Euler angles. If
we consider a "fixed" reference coordinate
system OLjE0E2 and a system Ox1Xpx3y
attached on tge rigid body, and if ON
‘ is the intersection of the plane Oxjxp
with the fixed plane 0f1&pr we define
the angles as:

-

$ = &7 GN, P = N@xl; B = E3OX3.

it is obvious that the position of
the rigid body is completely determined
if the three Euler angles ¢, ¥, 8 are
given.

3. The inertia system is the
coordinate system with respect to which
the laws of Newton hold. The space and time of an inertia system
are homogeneous and isotropic.

4. We consider necessary to state the theorem of balance
of angular momentum. Besides 1ts general application to the whole /162
theory, which we will use for the special case of zerooexternal
forces, 1t constitutes the basis of the forced polar motion due
to action of forces on the surface of the Earth.

vector of angular momentum
angular velocity
external tordue

Consider

€]
2
L
N

We have G = r ~ p where p = mv, vector of linear momentum
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& t Z 't !
but - - -
’ Vyp —~— UA5 =0
= 1 AC_fadP L FaF1 ~ G LT
¢ ot ¢ \

i.e. the rate of change of angular momentum equals the applied
torque I.

(Note: Newton's Second Law: :F = dp/dt).

5. Consider a fixed reference system 0f£; with unit vectors
ei and a system Oxy with unit vectors ej, moving with an angular
veloclty w. Consider a variable vector

G o ﬂ/G=G;,€:,%§ﬁ *{Z +.6~;§é§ = GX/é:"“GkQé&%C?@"} (é-jll

We call the "total" derivative the derivative of @ with respect
to the system 0&4

daG_ - = S i
~ ks G;,réff- Gy & + Cpy 53/
We call the "relative" derivative the derivative of G with respect
to the system Oxy, i.e.

© ‘-ZZ',G: G':X/ éf"" G-n é-? 1"6"\‘3 é}/./

_We take the derivative of G: _ _ .
GFy st Gf, 276 & = Gup €7+ Gye €27 Gx3€3 ¢ Gui € + Gx2 €1+ Gx3 €3

—~3 C{G’G-:= iGg 7:.0-}46— /5"74}-43-1, é?."‘"aj/jéz ¢ é;::ﬁ:f'lés)‘
("4 de - - - -
o~ Graerr Grzwa eyt 6’3“"49?

: /
~ WA Gkt ErFA G2y F Gxgci‘g/

e
e

i

then

~ dyzﬂ C?
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It gives the relation between total and relative derivative of

a vector with respect to a system moving with angular velocity w.

8.2,

g:[ﬁfwﬁﬁ?wzf-ﬂ3“:/éf+ (T s # Joz sz 3 Jayws )€q # (St w0t Jig “"""‘J-;J“Uj&

! stbery

J33

Consider a rigld body which rotates
arcund a fixed axls, passing through the
point O, with angular velocity w. if e3 is
the unlt vector on the axls of rotation 0Z,
then it 1is

w = we
3

Consider.a coordinate system OxjXsx
where 0Z z 0x3 and a known fixed directlon
Ot. Obviously the plane Oxyxs 1is fixed,
and 1f ¢ = ng, then we will have the
relation ¢ = w. (8.2.1). The following
formula is given:

/163

(8.2.2)
Substltutlng in the formula above wj = wp = 0, w3y = w,
=% 6?=QJ/J/3€"/'/'J«’3€21‘J€-3// (8.2'3)
The theorem of balance of angular momentum yields:
dG _ = _ =
g =G=1=L (8.2.4)
From (8.2.3) we have:
;' GJ/]IS’f:?" So3 €9+ [€3 ) 1o /erfu‘z/ﬁ 5’2/ & (8.2.5)

I: torque of external forces.

The unit vectors and the angular velccity are related
through relations of the form

I’

7 =mzte':, §z=€34 €z , &3 =



Then (8.2.5) yields finally:

G (T3w-Toswi)ér+ (TozairJn wWéet Jii€y = Z_/ (8.2.6)

If 1y, Lp, Ly are the projections of the torque 1 with respect
to the axes Ux1, Oxp, Oxg correspondingly, from (8.2.6)

T3 — Jeawdi= L2

|
™~
LY

T2z o +Jiz w?

Je

(8.2.7)

I}
~
LN}

Considering Eg. (8.2.1), ¢ = w, the third part of (8.2.7) becomes /164
J¢ = L3 (8-2-8)

Assume that the Earth has the shape of an ellipsocid with
two equal axes. We take as o ¢coordinate system Oxlxzx the
system of the principal azes of the ellipsoid. The prdducts of
inertia are zero with respect to these axes. Thus the system
of prinecipal axes coincides with the system of principal..direc-
tions (principal axes of inertia).

We consider that the axis of rotation of the Earth (instan-
taneous) coincides with the principal axis of the ellipsoid and
we assume that the external forces are zero. As external forces
we consider the applied forces and the reactions of the axis.

If the applied forces are zero, then the reactions pass through
the axls OX3 and therefore have zero moment with respect to the
axls Ox3.

Therefore, L3 = 0. From the equatior J¢u = Ly + @ = constant.
Also, since the products of 1nertia are all zero, %he remaining
guantities of (8.2.7) vanish, i.e. :

S0 we conslder the following:

If the instantaneous axis of the Earth coincides with the
principal axis of the elllpsocid and if the external couple
acting on the Earth 1is zero, then the angular veloclty w will
remain constant and the axis will keep its initial position
(dG/dt = 0 - G:= constant).
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8.3. Motion of a Rigld Body Around a Fixed Point with Moment

Consider a rigid body which can freely rotate around a
fixed point 0. Consider alsc a coordinate system Ox31x2x3 rigidly /165
attached to the body and OE£1E2E2 an inertial system which we will
use as a reference system for the motion of the body. Since we
have three degrees of freedom, we
need three parameters to determine
the position. of the body with
respect to the axes 0figp&3. We
choose the three Euler angles ¢, ¥,
8. To study the motion of the
rigid body, we will use the
’ theorem of balance_of angular
momentum, dG/dt = L, where G 1is

: the angular momentum with_respect
/ to the fixed point 0 and L is the

torgue of all the external forces

with respect to 0. The derivatives
are taken with respect to the
inertial system Og;£2£3

We assume that the system Ox XpX3y colneides with the principal
axes of the ellipsoid of inertia (coinciding with the principal
axes of inertias-principal directions). 1In this case, the vector
of angular momentum takes the form

—~ G =AU e e G Dbz E3 (8.3.1)

i

The last relation is derived from (8.2.2) if we set Jiy = 0,

Ji1 = J1 (4 # %), where the w], wp, wz are the projections of
the instantaneous angular velocity w “of the rigid body on axes
Ox1, Oxp, Ox3 correspondingly and Ei are the unit vectors on the
principal axés.

4s we have mentioned, the deriwvative dG/dt is taken with
respect to the lnertial system 0515353. It was shown that the
derivatlive dG/dt 1s related to the "relative" derivative of @
wlth respect to Oxyz, by a relation of the form:

(8.3.2)
o a’é‘ Qs (’? s A 6- h
where - ot &z

(8.3.3)

LG o Tty € 4 Nr 2 G + Ty G5 6
ot S
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If we also take into account that we have

W= i &1 +Wr €9 *+W3 5’—5/ (8.3.4)
and that ) ‘ | £166
d‘- - Z — dsé- -f(J:’ - G—‘"—"Z .
ot ot B (8.3.5)

we obtain from (8.3.5) the system:
j;ﬁb - /?G “JG,)UZ Wy = ZJ
Jiw} *[J&“-]i}ws Wy = L2 f e
Jy a3 — (Ji-J2)on 2 = &3 4{/

I4 are the projections of the moments of external forces with
respect to the poilnt 0, on the axes 0xj, correspondingly. Equa-
tions (8.3.6) are called the Euler equations.

The solution of the system (8.3.6) will give the motion
of the instantaneous axis of rotation with respect to the moving
body. If we want to find the motion of the Instantaneous axis of
rotation with respect to the fixed axes, we must express the
components wi of the angular velocity in terms of the Euler angles,.

8.4, Motlon of a Rigid Body Around a Fixed Point, with Moment of /167
External Forces kgqual to Zerc

We will consider the special case of zero eixternal forces.
Then the moments also of the external forces with respect to
point O will be zero. Therefore, the Euler equations become:

S, —(7e-Ts Jows = O
; ].{"‘dt).? _‘/]S-J:')%UJ =0 |
Kos ~{0-2)ww: =0

(8.441)
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This is the case where the fixed point O coinecides with

the center of mass of the body and the external forces are only
the weight of the body.

If we multiply (8.4.1) by wy, wp, w3, respectively, and we
add

.
thu

7 A { o T g
¥ ];fd!q-l .Z?U;djzf-\;éw;w;:,:—é{-i{_ /LU,‘#].?UL*fﬁwsj = O .:::;b

(8.4.2)

=:>. r:-é- /.Zr(.{f,l ]}—@3-‘#]3‘432 j/

= const

Also if we multiply (8.4.1) by Jjwy, Jouwp, J3m3, regpectively,
and we add

o f;ew,hb-f- .7:_5(1)'?@21‘]3 @30)3::?—-«&(5&),{]; G.)t ‘7.; 3

—_s L% = J;zwf-yf ..7;"'6),2# J; wj"/ (8.4.3)

= const

Equations (8.4.2) show that the kinetic energy of the body
remains constant and Eq. (8.1.3) shows that the norm of the
angular momentum with respect to the fixed point is constant.

The solution of the system (8.4.1) gives the motion of the
instantaneous axis of rotation and the instantaneous angular
velocity with respect to the body. In order to determine the
position of the body in space, we must have the Euler angles as
functions of time. Since L = 0 (angular momentum constant dG/dt =
= 0), we choose the fixed reference coordinate system 0f1Es&3iin
such a way as to have the axls 0f5 coinciding with the direc%ion

of the vector of angular momentum. Then: /168

System pz £, 5 —— G= G &g

System - f8.4.4)

Oxy _— G = ‘Zfﬂ-’gégf\];a/r?zf--]}ws 9;(

But having G coinciding with 023, we can find the projections on
Ox4 using the Euler angles

i~ G, = Gsinpéi-nﬁ , Gz = Geosysin/ , Gj = Gcosy (8.4.5)
|

From (8.4.4) and (8.4.5), we have:
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| J:GJ; = G‘Siﬁj;{,_simﬁ

| JGaQ

G cos'p. si'm? ‘/

il

. S (8.4.6)
/5&-’3 = @ ‘-90,3“3 s
and we can express the angles 8, ¢, ¢ in terms of wy(t)
='-'-} cos 1‘«!9 | -—éﬂi tanvef = _\Z"._Q_}...I__ ¢.-_-: _wj—-'z ;
W= Towp cos§ .7 (8.4.7)

8.5 Analytical Solution for the Free Motion of a Body with an
“Axis of Symmetry

In the above, the Euler equations were given for the general
case of a motlon and then the case of zero external forces was
considered. Considering now the Earth, we will first assume the
exlstence of an axis of symmetry because of our earlier assumpticn
about the shape of an ellipsoid.

In this case, we have the same moments of inertia with

respect to two principal axes J; = Js, and if J3 = J, the
equations (8.4.1) take the form:

Ja, = (N =V Jwew;

Ly ==(Fi-7) s oz | (8.5.1)
Jé3 =0+ 3 = constant. Taking the derivative of the first of /169
(8.5.3) and using the second equation:

. =72 2 f‘

.CUJf- Lf/'-"?_;-‘) C‘Ja -/wj == O ‘,f '(J8_5.2)
We will solve it:

f —— Z'-fws_ = B f

1 J: |
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The corresponding homogenelty is D° + B2 = 0 » D = #iB. So
the seclution will have the form

~ w, = e %, At

= w, = [ 'cos-t?F,t.,lisi;ngg Y. - (8.5.3)

Substituting in theérfirst part of (8.5.1) and performing the
calculations, we obtaln

!
= G_)I = BG‘J: =y aJz = -~ ﬂsitﬂﬁ A cos-87 !

A, T are constants, defined by the initial conditions.

We flnally find, for the position of the vector of the instan-
taneous angular veloclty with respect to a moving body:

~  @= F(sin3t & ¢ combtér)y o §, | (8.5.4)

(because wy = projections of w with respect to Oxy). Since wy =

= cos8, it is |w| = constant. We observe that the vector

(sinBte.+ cosBte,) rotates with respect to the body with constant
angular velocity B. That is, the position

Ia : of the instantaneous axis of rotation is

not fixed with respect to the moving body,

but 1t rotates around the axis of symmetry

of the body with angular velocity B. There-

fore, it completes a full rotation in

time
| ) 2n _ 207 _ |
;& ANz + ot s ( ?u S {J’;-’I)w.'fj (8.5.5)

Having found the instantaneous angular
velocity with respect to the beody, the
motion of the body in space is determined with the help of Eq.
(8.4.7), 1.e. of:

.cos,s_:.zcwg , tan-y ‘c—&_ P ﬁ::.‘l’.’_"ﬁ'

&Wz o cos n}
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i

w3 = constant I @ = constant

Therefore, & constant
So we have

constant

w
1

; also  tang = —L = tan8t => ¥ = &¢ | /170
Z I
ey = % t, G = modulus
1
be B85 Ge S.4
, 7= oc, g= 7 ¢ | (8.5.6)

Therefore, the rigid body moves in such a way as the axis 0x3

has a constant angle with 03

{6 = cose) and the angles ¢, ¢

are linear functions of time. The instantaneous angular veloclty
in terms of the Euler angles 1s given by the relation

G =54 6 Erv 465 ! (8.5.7)

where n. = unit vector of the axis ON, if w is the rotation vector

with respect to the axes ON,
previously given relatlons,

—

0g3, Ox3z. Taking account of the

.~ . L~ s
v = Q£3.+4¢€3=——-?3+8€3 / (8.5.8)

/

Therefore, the vector w lies on the plane of the’aXES'O§3'and‘Og3,

and because the plane of the axes 0£3, Ox3 rotates with angular

+

velocity « and the axis 0x3

velocity ¢ = <. » the vector & (u = 6)

will rotate Wi%h respect to the fixed
system 0f; around the 03 axis, with
the same angular velocity, and will
descrilbe a conical surface. Wlth
respect to the observer on the bedy,
the vector w describes also a
conlecal surface with axis Oxz and
constant angular velccity B (8.5.4).
The two cones are tangent along the
instantaneous axis of rotation
rolling on each other. This motiocn
of the body is called regular pre-

- cession. The angle a between the

vector of the instantaneous angular
will be: '

- -

. — - /w/?f /
tang = 4 +-37
@ . &y : €8.5.9)
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v R = (F ‘\co:sﬂ
/’5:& .Zr__ffds ’ Cosﬁz? &)3} = - A LZ7,,
Also I
(8.5.10}
and then Eq. (8.5.8) becomes
— G= 25 ‘Zf"f cosyJ €3 /',,. (8.5.11)

Substituting (8.5.11) in (8.5.9), and taking account of

+3 .o —

&3 €5 = cos.3 /6-3 /1553/: siny —~ tan & =

e /‘
tmlpf (8.5.12)

i

From the relation (8.5.12), we have that 1f J < J{ » & < & (Fig.

1), J > Jy = o > 8 (Fig. 2}. The above are true for the case of
the free motion of a rigld
body with zero external forces,
or for the case of the motion

f of a rigid body around a fixed

i point when the moments of the

! external forces with respect

| to the poilnt are zero. But

! all the above are also applied
to the case of the free motion
of a riglid body 1n space,
when the applied forces have
zero moment with respect to
the center of the body,
because again system (8.4.1)

Fig. 1. FPig. 2. holds. This happens, for

example, when the appliled
forces are derived from a homogeneous gravity fleld and the bedy
has spherical symmetry with respect to its mass distribution.

The case of the motion of the Karth 1s an example of the
above, because we have imposed the followlng conditions:

1. System Oxj = system of principal axes of inertia (princi-
pal directions). _

2. Vector of angular momentum §'=_G33, i.e. parallel to 053.

3. Existence of an axis of symmetry.
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k. The axis Ox3 is tilted.

5. Absence of external torques and forces.dérived only
from a homogeneous gravity field.

Therefore, for the case of the Earth, considered as an

ellipsold by revolution with J1 = Jo < J, moment of inertia with

respect to the prinecipal axis of symmetry given by J and having
the axls Oxg tilted, it was proved that this axis will Ffollow a
precessiona% motion with angular velocity B with respect to the
moving coordinate system Oxj. And since -J3/4Jy - J) = 300 and
w3 = w, Wwhere w = angular veloclty of rotation of the Earth, we
will have that the instantaneous axis of rotation of the Earth
will not be fixed with respect to the Earth, but it will rotate

arcund 1its axls of symmetry completing a full revolution in =300

days (304). That is, the vector of the instantaneous angular
velocity of the Earth sweeps a conlcal surface with respect to

/172

the Farth with akxisnthe axls of symmetryhof thélhEarths The!ldmplitude

of this rotational motlon 1s very small, on the order of a few
meters.

Summarizing, incthe absence of external forces, if the

axis of inertia of the Earth colnclides with the axis of rotation,

the Earth will contlnue to rotate around the principal axis of
inertia; otherwise, it will describe a conical surface with its

center the center of mass of the Earth and axis 0x3 the principal

axls of inertia. But in reality, the period of motlon of the
instantaneous axis is different, because the Earth can not be

considered as a rigid body, and because there are external forces

acting on it.

8.6. Theory of Forced Motion

In this chapter we will examine, for a rigid body, the results
of the action of external forces which appear because of physical

phenomena.

vector of angular momentum,
angular velocity,
externally acting torque,

Given

w am

G
2
L
we will have: G = r ~ p where p = mv, vector of linear momentum

T ~

/173

s DG OAF A2 RA LD am s S T8 = OAP =0
~> Qb 5 NS P ALL _ GAS s FA SR IJHp = UAP =
wr = PN '~ o ) ot ¢ P r
(by definition, zF = g% B',
el R o - Newton's law)
'——'-="‘/l_fi_.=-_l'4F=.-.£_.
oae X%
!
—dF ’ -
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l.e. the rate of change of angular momentum is equal to the
applied torque. '

This means that the torque applied on the body changes the
magnitude of the angular momentum 1n the direction of the torque,
and also it changes the course of the angular momentum. Obviously,
the second term is significant only when the direction of the
torque 1s different from the initlal direction of the angular:
velocity. We conslder a torgue applied on a body which can
rotate around an axis able to move (rotate). Any torque can be
analyzed in two components, one in the direction of the axis and
-one normal to 1t. The first component, having the direction of
the rotational axls, coincides with respect to direction with

the angular momentum., The result is the change in magnitude of
the angular momentum.

Of greater significance is the case of the normally applied
component. We will analyze this case in detall, because exactly
thils changes the direction of the axls, and it is the main reason
for it. It 1s therefore enough to consider only the application
of a vector of normal torque, since the parallel vector will only
change the magnitude of the angular momentum. For definiteness,
consider a rigid body s h a p e d by revolution which can freely /174

rotate (top).

Fig. 1 Fig. 2.

Assume @ is the angular velocity. If external forces are

- not applied, the body will move wlth a constant angular velocity
£ and constant angular momentum. Consider that on the one tip
of the axils of the dise - a perpendicular force is acting. It
will exerclse torque L = r A F where T is the distance of the
point of application from the center of mass. (We consider the
center of mass as the origin.)
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Due to this torge, the vector G will change (as 1s already
shown)}. Thls change is L = dG/dt.

Considering L constant, we obtain aG = Lat. . .«b

But the change in the vector of angular momentum will be
in the direction of the torque; therefore, it will be perpen-
“dicular to the initial vector (see_Eq. (2)). The final result
Is given from the vector sum G + AG, and it is

tanAé =.%? = A8 {(rad)

1.e. the initial vector rotated an amount 46. Thus the application

of the angular momentum.

Assume that the acting force F is constant and contlnuously
perpendlcular. Therefore, torque L will also be constant and,
moreover, i1t will llie on the horizontal plane. Therefore the
rotational axis will rotate on the horizontal plane with constant /175
velocity, because L 1ls constant. We therefore cbserve that the
external torque applied on the axls of rotation of a rotating
disc ,causes contilinuous rotation of this axis around an axis per-
pendicular to the initial.one.

ey

A8

The velocity of rotation & will be given by = i 4

t

But we have shown that AG = LAt and tané = aeT = AG/G T @ = L/G.
That is,the magnitude of ftriangular velocity of the rotatiocn of
the axls is equal to the ratio of the magnitude of the external
torgue over the magnitude of the initial angular momentum {(norm
of "resistance™). The angular velocity 9 is called velocity of
precession of the axis of rotation, and it is perpendicular to i

o

G, i.e. I = 2@~ G. Also taking account of the lncrease in angular
momentum because of the parallel component, the total effect of
the action of the torque on the body will be

'(_.‘£= GKk+GALQ (differentiation G = CK)

The phenomenon described above Is fundamental for the theory
of forced nutation, i.e. of the nutation of the pole due to
externally applied forces (meteoroclogical tide).

From the previously given relation

'G o |

T -
L=Y8¢8.69F oG &8s Gasd j
ol efe ! adt
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i.e. the result of the externally acting torque on the veloclity
of precession is proportional to its value.

9. A NEWER MATHEMATICAL THEORY OF THE MOTION OF THE EARTH

9.1. Introduction

The classical theory of rotational motion, based on the
assumption that the Earth is a rigid body, was completed toward
the end of the last century. Around 1882, Oppolzer obtained the
formula of precession and nutation in a form which has been used /176
up to the present. Therefore, reconsiderations of the thecry
appeared only under the form of improving the accuracy of the
values of certain constants entering the formulas. In this
theory, certaln important inaccuracies and omissions were not
discovered. It was also not noted that the results were different
In some cases from the observations made. It was already recog-
nlzed that the Earth 1s not a rigld sphere. But no serious
attempt was made to reconsider the theory on the basis of new
assumptlons about the mechanical properties of the Earth.

Thils point of view changed when the li4-month change in
latitude was discovered. With harmonic analysis of the results
of the latitude observatlons, Chandler tried to make an accurate
evaluation of the Euler theory of polar motion. In any case,
his work played an important role because the results of the
observations were in disagreement with the theory. These had:
shown that 1t was necessary to reconsider the maln hypothesis of
the rigidity of the Earth. At the same time, scientists obtained
a criterlon for the validity of = .another assumption about the
properties of the Earth which would yield a Theoretically predicted
value of free nutation eqgual to the observed one, l1.e. of 14
months.

The above criterion was used in order to test the assumption
of the liquid core of the Earth, and finding that this hypthesis
leads to a reduction of the free period, we conclude that this
assumptlon was wrong. Newcomb consldered the elastic deformation
of the Earth during its rotation and showed, from simple hypo- /177
theses, that such a deformation indeed increases the free period.
This was proved in the work of Schweydar, i.e that this increase
in period was the only indication of the elasticity which would
be‘disCoverEd'in'analyZing‘the‘astfonomical'Observations. In
other cases, the Earth could practically be conslidered as rigid.
Though the formula for precession and nutation was Initially
obtained under the hypothesis that the Barth is rigid, we could
as well apply the same procedure when we consider the Earth as
an elastic body.
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New considerations would be necessary 1f some discrepancles
existed between theory and cbservations. Then the theoretlcal
research would have a speclfic goal, and it would not seem to
be simply a search for solutions of abstract problems of
mechanics. Therefore, it 1s desirable to have a complementary
comparison between the predictions of a theory which considers
the Earth ideally elastic and the astronomical observations.

The present work is an attempt to make such a comparison.
In Chapter 1 the theory 1s given, using vector and tensor analysis.
To justify this, an abandoning of the classical procedure in
deriving the equations for precession and nutation 1s enough to
show that the tensor analysis method is generally accepted in
the mechanics of rigid bodiles.

In only two works 1s the effect of an externally applied
force on the rotation of an elastic Earth considered. These
works are by Schwedar and Sekiguchi. The work of Sekiguchi was /178
based on the results of a previous work of his, in which Woolard
showed that there is an error in the principles. In what o
follows, use will be made of the work of Schweydar, as a way to
check on the results that we obtaln using other methods. Note
that we should decide which of the theoretlcal results are more
Important for comparison with the observations. We first
consider the constant of nutation N. 1In a compact presentation
of this matter, Idelson explained the importance of the follow1ng
paragraph. "In 1930 Sitter took as the value of N

N = g".2075 + 0".0055

In any case, by his method the value N = 9".2181 was obtalned.
This value was chosen as a consequence of the theory of a rigid
Earth with the value of precession and the determination by .
Hink of the precession of the sun and the ascension of the moon,
i.e. 1t 1s a theoretical value. Later, they lncorporated a small
change. Jakson. considered this discrepancy as 'one of the most
important discrepancies of the constants of the solar system,'
and stated that the relative results in the precession could not
compensate for the results of the relativity among the constant
relationships. Bronwer noted that de Sitter unsuccessfully
searched for the solution of the problem during his last year.
And, even more, "from the previous summary it can be seen that
the matter concernlng the constant of nutation has not reached a
final conclusion. The analysis of the enormous amount of
materlal gilven by I.L.S. gives a value for N smaller than the one /179
theoretically predilcted.

Recently Jeffrey tried to explain the discrepancy by con-

siderlng a fluid core in the Earth, and as far as we know, he is
sti1ll continuing his research. The results of Przybyllok, which
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Idelson considered to be very important, were taken from infor-
mation by I.L.S. during 1900-1925. We now have much more
information. The results of the I.L.S. published up to the
present cover two cycles of nutation. It seems to us important
to determine first the constant of nutation, and then to find
whether the new result for N approaches the theoretical value
or deviates from it.

If the value adopted for N is wrong, the period of 19 years
would be discovered in the nonpolar change in latitude, but this
might have a cause which 1s shown in Chapter 19. Qur problem was
to make a check, as complete as possible, of the theory of the
Earth's rotation. :

This is not only restricted in determining N (the coefficient
of the term in obliquity), but we will alsoc examine if there
exists a phase of deceleration, and 1f the observations verify
the ratic of the axes of the ellipse of nutation. However,
intense research has been carried out on these matters, but no
definite answer has been given.

The theory of precession and nutation ,leads to concrete
relatlons among the constants of precession and nutation and
the coefflicients from all the other terms in the formula for
nutations and right ascension and declination. So, if the con-
stants for precession and nutation are known from observations,
all the other coefficients are determined by accurate computa-
tilon. There was no doubt about the accuracy of the theory, and
there were no indications, in trying to determine them, of other
coefficients different from the observations. But this kind of
determination, as we have already said, is of 1Interest if it
constitutes a way to check the theory. Recently Sekiguchi,
Morgan and Popov independently tried to determine the range of
the ll-day term, from a variety of latitude observations. The
basis for such a determination is the following. If the range
from a 1lli-day term obtained from the theory differs from the
correct one, a term asin{(2¢'- a) appears in the change of
latitude, where  !|is the mean length of the moon and o is the
mean right ascerision of the pair of stars (or the right ascen-
sion of a zenith star). It must be noted, however, that the
diurnal term of the moon in Oppolver's expression for forced
latitude change has exactly this formula. This leads to an
uncertainty in the representatlon of the results of andlysis of
the observations. A possible assumption, made by Morgan, is that
the theoretical value of the coefficient of this term is not
subject to correction, and 1ts difference from the observed
value can be considered as a correction of the 14-day term. But
certainly, we can not do that. Oppolver took the expression
for forced change of latitude as one of the results of the theory
of the rotation of a rigid Farth. In Chapter 1, we prove the
corresponding problem, starting f'rom the hypothesis that the
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Earth i1s an elastic body, but since our intention is to check
this hypothesis, we can use the theoretical expression for forced
change of latitude only for comparison wilith the observations,

and not for correcting the results of these observations. The .
uncertainty mentloned above can be overcome in the following way.
The formulas for precession and nutation describe the motion in
space from the angular momentum of the Earth. In Chapter 1, we
wlll see that these formulas do not change by changing the
hypothesis about the mechanical properties of the Rarth. This
means that 1f a term esin({ - o) is discovered in analyzing the
observations for latitude, this is recognized as something
corresponding to the diurnal term of the moon. Thus, the obser-
vations must answer the following questions:

Does forced polar motion take place aceording to the
theory of an elastic Earth?

This matter is analyzed in the third chapter. We will not
attempt to construct a new theory on the basis of other hypo-
theses about the mechanical properties of the Earth. However,
we will consider briefly the hypothesis of the liquid core of
the Earth in the last chapter, where we use the results of the
previous chapters in order to derive. certain conclusions about
the interaction between the core and the crust.

The initial conditions for all the above computations will
be the result of observations of the pairs of stars by Tolcott's
method. We call the center of the arc of a great circle connect-
ing two stars the center of the pair. When we say "declination
of a pair," we mean the declination of the above center (exactly /182
as in the expression "declination of the sun," etc.). OCbviously,
it 1s equal to 1/2 the sum of the declinations of the stars which
constitute the pair.

We similarly define the terms "zenith distance" and "right
ascenslion" of a palr. Sometimes we will use abbreviations, when
this does not lead tc any confusion.

1. About classical theory.

How 1t was abandoned (Chandler).
Comparison of elastic-rigid.
About the value of N.

Jeffrey + core.

. ld-day term » elastic or rigid?

AT o o

Summarizing what we have said in the introduction to the
newer theory, we can observe the following. The classical theory
hased on the assumption of a rigid Earth 1s not valld any more,
and this was proved from the period Chandler found. The newer
theory accepts that the Earth is an elastic body. This theory
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seems to be valid. Indeed, Newcomb, taking Into account the
elastic deformation of the Earth, showed that because of this
we have the increase 1 n peried found by Chandler. .« . i

After that, Schweydar showed that this increase in
periocd is the only manifestation of the assumption about the
elasticity of the Earth. Therefore, in developing the theory,
such an influence must be gshown, and also we must try to find
other possible indications of this hypothesis. Afterward, we
will compare our results with those of the observations in order
to draw concluslons for the validity of the theory. We must /183
therefore examine whether forced polar motlon takes place
according to the assumption of an elastic Earth.

We have already noted that we have certain disagreements,.
as, for example, the value of N {(constant of nutation). There-
fore, it will be necessary to improve our assumptions. For that,
we will consider the relaticonship between the crust and core
of the Earth. ‘

When we say that the Earth deforms elastically, we essentially
imply small deformatlions obeying Hook's 1law. But this deforma-
tion causes change in the ilnertia. And exactly thils change in
the inertia has as a result a n increase in the period. So our
main concern 1s to find the change of inertia tensor due to
elastic deformation and to substitute thils new tensor into the
equatlions of motion. Exactly this is carried out below.

9.1 {sic] Deformations

Before we present the newer theory, it is necessary to
mention a few things about the concepts which made the newer .
theory necessary. That 1s, about the general deformation of the
Earth due to the gravitation fields of the Moon and the Sun (of
a tidal nature). The following are also a first introduction to
the theory of plasticity.

9.1.1. General Deformation of the Earth

The real difficulty comes from the fact that our research
object 1s the Earth's deformatlion. For cases where the wobble
ls on the order of 1 year or less, and for a purely elastic
deformation, the description of the deformation is made by /184
introducing the Love numbers. With an appropriate choice, a
variety of problems can be solved with notable ease. But this
is a mlisleading situation, because the corresponding elastiecity
problems have been solved 1n such a way as to make the Love
numbers appropriate,
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Considering the general problem, we could tolerate certain
deviations from the theory of elasticlty. In any case, the
choice of a purely inelastic model for the Earth includes many
assumptions, and the exact solutions are not easlily attalnable
and not worth the effort of obtaining them at the present state
of the art. Kelvin assumed that the Earth behaves elastically
for deformations of a small period, while Darwin assumed that
the Earth behaves plastically only for small forces. Today,
our standpoint, with regard to the stars, remalns the same.
Only for some deformation problems, small progress has taken
place. In the previous chapter, we presented a few points about
the theory of elasticity. As far as plastic deformations are
concerned, the relations are relatively simple, if the elastlc
stress is small. Thus, we can have deformations remaining, but
" the elastic strain is still constant and small. This 1is the
easiest case in the theory of plasticity.

However, in the case of the Earth, the total elastic strain
is often very large due to hydrostatic pressure. For this reason,
we assume that the strain is composed of two parts, i.e. of one
large initial strain due to the self-attraction of the material
elements, and one small strain due to small changes in the forces
acting on the system. Of course, we are interested only in the /185
superimposed small strain. The value of the plastic deformation
is

iy = oty Lty |
aqL (1)

where d1j 1s the total value of the deformation and e1j 1is the
elastic strain. A materlal 1s plastically deformed 1f aj j # 0.
The total applied stress in the Earth's interior is

Py = ~plyt vy #Ig| (2)

where p 1s the hydrostatic pressure.

11 1s the elastic stress = xeppdiq + 2uegy, A, u = elastic
constants. sy, is the stress due to friction. This depends on
the model of %he Earth. The only force on the Earth which 1s
in hydrostatic equilibrium is the hydrostatic pressure. The
distribution of the density at any point in the Earth defines
the size of thils pressure. Today, we initially consider the
Farth in hydrostatic equilibrium, and then we examine posgsible
deviations by relation (2).
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Finally, in order to obtain the force-deformation relations,
1t is necessary to know the plastic deformation. . The exact
nature of this dependence is not yet fully known, and it depends
on experimental research. . Therefore, the problem of plastic
deformation has not yet been completely solved.

The surface of the lakes and seas of the Earth is subject
to periodic rise and fall in an interval slightly greater than
&.:day .. . Newton interpreted this phenomenon as a result of the
gravitational force applied to the Earth by the Moon, mainly in
combination with the gravitational force of the Sun. The solld
crust of the Earth and the atmosphere of the Earth are subject
to an analogous influence, on a smaller scale. Tides are due to
the difference ofithe gravity of the Moon on the Earth's surface
from the gravity of the Earth's center. The result of this
difference in gravity is the rise in the directions connecting
the Earth with the Moon, and fall in the directions perpendicular
to the former.

Consider the positions of the Earth and the Moon (E,M). If
MM is the gravitational force of the Moon per unit mass at point

M and EF is the corresponding unit at peint E, and if we analyze

MM in two components, one equal to EP and the other to MI, then
MII causes the water to rise and brings it toward A. We analyze

/186

MI in the radial component Ma and the tangent ME (circumferential).

Then Ma reduces the intensity of gravity at A, A' and increases
the intensity of gravity at B, B' and ME moves the water toward
A, A'. Therefore, we have rise at A, A' and fall at B, B!', and
the water mass tends to take the shape of an ellipsoid by

revolution around the directlon connecting the Earth with the Moon.

The tidal force (the difference of the gravity on the surface and
in the center of the Earth) is proportional to the mass and
inversely proportional to the cube of the distance. This can

be proved as follows. If M is the mass of the Moon with respect
to the mass of the Earth, r its distance measured in radii of
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the Earth, then the acceleration at E will be.ggé and at A,
re -
g( M Therefore, the tidal force F will be /187
r-1)

F:(?/f —{__.

re CF/)l

5

/ jHV 2 gl -p? 3,1-/ Zim st} ~ -29/7
il )2 befe-1)t rd

If the Sun lies on the same straight line connecting the
Farth with the Moon, its force of gravity is added to the one of
the Moon. The gravity of the Moon and Sun tend to decelerate
gradually the rotation of the Earth.

9.2. Theory of the Rotational Motion of an Elastic Body - /188

9.2.1. Derivation of the EquatloHS‘of'Motlon‘from the

Consider a right-handed fixed coordinate system X', Y', Z'.
The plane X'0Y' coincldes with the plane of the ecliptic at an
dnitial time, and the axis O0X' passes through the point y of
the vernal equinox of this time.

in this system, we denote the

unit vectors as 1', J', k'. We
also define a second coordinate
system as follows: The axis 0OZ

is 1n the direction of a unit
vector K and the axis 0X along
the direction of the vector i,
where

_ K7K!
" sine

o (Note: 8 = obliquity; ¥ = length
‘ measured from one position), and

8 1is the angle between K, K'.

We call the angle between QX'

and 0X y.

The c¢ross product of two vectors i1s a vector normal to the
plane of the other two with norm equal to the product of the
norms of the two vectors times the sine of their angle:

KAK'=1+ ging = K-K'-s1ina
i.e., the vector of norm i = K.-K' lies on the plane X'0Y' in

such a way that the three vectors K, K', K ~ K' constitute a
right-handed coordlnate system.
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Any vector can be written in the following form:

-’] ‘;,x'i""ﬁy:/:,f. # 2"«'=’ yoiyf rzr = kar; o Ol PO / (1.1)

where x', y', z' and x,y,2z are the projecticns of a vectorlf. On
the axes of the two systems a¢/¢w and oy, ay,. -og are the components
of the vector in the three directions ¥, K', 1.

From Eq. (1.1) it is easy to /189
find the expression for the
proJections of the vector on the
two systems. For this purpose, we
use the followlng table of the

> direction cosines of the axes of
the two systems.

A £

The table is constructed
by using the spherical triangle
defined from the axes of a sphere
havling as center the point 0 of
the system; for example, in order
to find the expressicn for x!' in
terms of ags Gy, -Gy, We take
the scalar proguct of (1.1) with

L

7‘) r4 Ly 2= ‘;‘ li-.-—h

‘".?‘c".—.-i::i = {"kog +:"(”O’¢—/'("a9‘= -Sin g Wy gy —cosy¢ a,
z-_'/ : ‘/T-r /E', I
i cos y gin g o L‘{
J |-cos P grmy | cosP cosy —5in 7 |
kK =590 siny | sin? cosp cos ¥
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We call G the angular momentum (expressed in terms of the
angular veloeity). Then G = K|G|. Therefore, the projections
of @ on the fixed axes are ‘given from the relations

Z’= G.Céfg\

Xr_ GJ'J-B?B :1‘3’)}‘1” , —‘i = é\ff.;fp 605‘/» ’ i <1'2)

-—

We call the angular velocity of the rotation 2. .Then, from
the rate of change of the angular momentum, we obtain

KIG/+2AG = L | (1.3)

where I is the torque of the externally applied forces.

Assume that r = x'I'+ y'J' + z'k' is the positlon vector of
the celestial body (Sun or Moon). The force applied on this
body by the Earth is V (grad v), where V depends on the direction /190
of the principal axes of inertils.

T L= A gradp] (1.4)

where Iy

where M 1s the mass of the celestial body, f the gravity conétant,
and I fhe inertia tensor of the Earth. Consider the following
figure.

As usually the force is related
i to the potential{{of energy, or
of gravity, etc.) by a relation of

) the form

—

.‘.; ! . —_— d y i‘: = -; —_
; g///// / F=— o / but  on 5rad§4: 7/
L | , W

Therefore, the vector of the external
torque will be

o A i ;

m‘lr__:..__y'/\gr'ad?

From .V=_22 ¥m o -1 we will have:
Far's
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Since grad l5 is in the direction of r, we can omit the second
r
term. (the inner product does not contribute)

that grad (r - Ir) = 2Ir.

It is also true
have:

So if we substitute in Eg. (1.4), we

£ G + 0 AC = 38H 24 }'r/
2 (1.6)

Since the system xyz rotates, the angles 6, ¢ change. There-

we can write the angular velocity of this frame as the
vector sum of the two angular velocitles, i.e.

fore,

.‘_?h_—_—f’}/;—-/-’;?‘ / because :2%3’ SN~ T A {
'.2- Ty -’v;.z_‘.s‘!
(see [reference left out of originall).
A/-G'f 5/\(;..—_!@;/1 fﬁ-'-h-\

= = =73 ' ™ ge ?ultlply both members (1)

. . « by | . 5
~ JK Gri2aAG 4/ "p”r-r\fz- T Lk T t::ur:u?ﬂ"’:O
~% J-Q-.Ak.c?q = _J"{ﬁ Zr //_A;/ I:.

¥ :
but En & = rrow? T S ﬂ—,,fj::..? E'wﬂ._.% cﬂ:_-}p' Mﬁ
— Gedy = Ry LAy (i A'F]
. rs'
Similarly, the other.
Therefore, \ ‘ /191

CAG = G (&' —TARd ) = .

because - (k A Ky A ) <

(—-1 J:'J—;Sy,v‘ofg) \f

'\

C C;? N OAG“GK/‘\ (A’-%-—-(B}l G(t4{¢ {2‘(—3
U51ng this result, we take the lnner scalar product of both

sides of Eg. (1.6) with the vectors -z, k and k' in rotation.
Then we obtain (1):
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i _ _ o
' Guin W= EEL S (Fa Lr) < - O Lr O a7 vimest

G 3FH 7 (Falr)=3F2 Ir féar) times® o (1.7)
P r K )
SEM p, (EoaF Jeimex’

QZG-CGJJ— G Fimp SI;.—_‘Z.’!_/Z,{:’ (’:AIP')= P
' ~J »

The Iast expression was found by the law of transposition of
the triple inner product. Essentlally, the above equations give
the projections of L on the system L, K, K', where L was substi-
tuted by its causal expression.

“of the BEarth

We wlll find the expression for the inertls tensor of the
Earth, as the shape of the Earth changes under the influence of
a force of tidal nature. We will consider the ellipscidal shape
of the undeformed Earth (when no force 1s acting on it) as a
biaxial ellipsoid in order to assume that the moment of inertia
of the Earth with respeect to any eaquincctial axls is A. We take
the principal axes of this ellipsold as the axes of an auxlliary
coordinate system, and W? ?enote by a, B, v the cosines of the
angles that the axlis Q7% 1) of this system forms with the axes
of the principal system. The inertia ftensor of the Earth in the
auxiliary system (system of principal axes, because the ellipsoid
was taken I diagonal form) is a diagonal of the form

(diagonalized)

And 1t 1s easily shown that in the system X0Y it 1s (the
inertia tensor) AE + (C - A)P {1.8) where E is the Earth tensor

and the P tensor is given by 0X.

oo | aj ay ;
P= |iha. ez Ay ; (1.9)
VA &y

161

/192



Assume now that the motion of the Earth stops. If the
Earth were in reality a fluid body (geoid) (a hypothesis usually
made in the theory of the shape of the Earth}, this would give
& spherical shape, but since the Earth as something concrete, or
even its crust, is an elastic body, it would remain a spheroid
in the absence of rotation, having less pressure than 1t really
has. In thils case, we call the inertia tensor I, and the dif-
ference between the polar and the equinoctial moment of inertia

(1 - K) (C - A)

In fact, the Earth rotates not around the polar axis of
the tensor Ip but around the instantaneous axes which change e -
their position continuously. Along this axis, the elastic Earth
contracts wilth centrifugal force. Therefore, we write the
total inertia tensor

where the tensor I, takes the dilagonal form in the auxiliary
coordinate system, the axis OZ¥ of which coincides with the vector

of the angular velocity 4, 1.e. the velocity of the axes 0Z0C. The
difference among the dlagonal elements of this tensor is

K(C - A)

If the density and the elastic properties of the interior of the /193
Earth are functions of the distance from the center only, then

1t is proved from the theory of the Earth's tidal deformation

that this difference is proportional to the potential of the
centrifugal force V, = -(1/2)n2W2 where & is the modulus (the
coefficient, modulus) of the angular velocity of the rotation

of the Earth and W» a spherlcal harmonic of the second order.

We can now write the angular momentum G as follows:

G = (Ig + Iuw
and using (1.8), we obtain:

;

G =/(/-x) [46+ (c-a) P]rx [ac+ (c—-4)Pw/_ZcJ/ (1.10)

We denote the direction cosines of the polar axls of tensor
I, in this system by oy, Bos Yo. For.the whole period for which
we hage information for polar motion, the ay and B8, never exceeded
2:107° and the y, was no.more than 10~11 different from 1.
Therefore, we shall neglect the squares and products of oo and By,
and we will put Yo equal to 1. Then the tensor Py (corresponding
to P) takes the following form:
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f o o @
Pa = ( ) o B /
Uo ﬁﬂ‘ .{ /

Weridenote the cosines of the angles between & and the axes
of the system XYZ by a«', 8', v'. They have the same formula as
the one of 5s Bgs Yo» and we can write the matrix Py simply by
changing the indices. From (1.10) we obtain by projection con
the x-axls :

s (/*f’][/fwxv‘ CC-A)Oe walitn (Awet Co-A)a' s T o |

{

Denoting (C-A)/A by a2 and mx/m2 = o', we find by rearranging that /194

2 ‘
~ o= Lk )@ cro/ (1.11)
F K ox?

The projeetion on the axis of y gives a corresponding rela—
tion between B' and Bg. In the denominataers, we can heglect the
second term. So we can write

a'=_ (/I-e)a‘a. 5;_/.z_,«)azg./

(1.12)
Therefore, the tensor Py can be written in the form
o o -ﬂ‘-;t')cc‘o:o
. ;
Pa) = 9] O — (’—KJI'B 59 I', (1'13)

-k Jata, ~#-xJatbe 1 i

We shall now consider the deformation of the Earth due to the
actlion of the tidal force of the Moon and the Sun. Calculating
the change 1n the elements of tensor I, which occurs because of
thls deformation, we take as spherical the initial shape of the
Earth, and so we can assume that the inertia tensor of the
undeformed Earth is AE, where E is the identity tensor. Then,
for any coordinate system, the axis 0Z¥ of which coinecides with
the line 003 passing from the center of the Farth P and the
changing system, the inertia tensor of the Earth takes a diagonal
form, and the difference between the principal moments of inertia is:
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\
Ko (c-A) e |

i
b

Where V is the potential of the tidal force. For the Sun, we

use the symbol Vi, and for the Moon, V». The coefficient K is
substituted by the coefficient Ko in the following. The tide

of the ocean is due to the change in centrifugal force, and it

can be considered as static. Hence, the change in the inertia

tensor 1s related to both phenomena, l.e. the tide of the ocean /195
and the deformation of the saolid sphere.

The diurnal and half-diurnal tides of the ocean caused by
the action of gravity can not be considered as statiec, and
therefore their amplitudes can not be related with simple pro-
portions to the potential of the changing force. In the above
(following) work, we will have to do with diurnal tides initially,
because only these change the lnertia ‘products of the Earth.
1t 1s known that the diurnal tide practically does not exist in
the oceans, and for this reason 1n the calculation of change in
moments of inertia in the case considered, it is necessary to
take account only of the tide of the body (solid crust )} and to
use the adjusted coefficlents which we obtained after we disg-
regarded the oceanle tide. This-coefficient can be denoted by

Ky

From the expressions

V.f::_i /ﬂt Wz
2 y;.!’

we obtain the following values for the difference between the
principal moments of inertia of the deformed BEarth:

,’-[/--CY/,-._—._,_‘B;_,{& Lo Cc-a) CZ-Q'2=_JI!H3 Ko (C-A)‘ I
PR 7 . ;7;} (1.14)

Passing now to the case of a rotating Earth subject to the
tidal influence of the Sun and Moon, we can make two additions to
the expression for the inertia tensor, so that it takes the form
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< (1715)
~r [ =St lw e L2 _

~ Where : : ( 0. ] A
' = (Cz- Gz
L -— (CI- a/} pl ’ ]z z . i V i(1_16)
%y X 2 X x: LY 22 Zs
j X. X: ’ ’.Z . P?‘:" _L yz)(z. yzYZ j’;Z:
pr=2_ | ¢ n Yo Ve | r* . 2
'VJZ 2. AR Z:%a cz yl- 222
Y7 ) 2.-‘/; o [ . ‘ /(1-17)

where x1, ¥1, %) and X5, Yo, z, are the coordinates of the Sun /196
and the Moon, and rj, ro the corresponding distances of their
centers from the center of the Earth. Now (1.15) can be written

i

7= (1-x) L aE 4 (c‘AJPo]fk[45;&”,4}/?@]-—7-’-'1’;”% (c-a)Pq /

r

_ 3w (c-a) Pe//
AN //:

N . C e " (1.18)
] | p
Tz aed Cc-a) L C-RY P b - 2EE [y . M2 /’z)//
. % w3 v, ¥ .

or

9.2.3. Equations of Precession and Nutation.:

The expression for I obtained in the previous chapter must
be substituted in (1.6)

2 - - /
—> & GF CAG- 3/#?'/1]}:7
. rd’ i

in whlch we write the right-hand side as the sum of two terms,

- W.. - |
M 54 Z.*"‘ <« 34K Py 75
Y 1"3" 2

165



After substitution, we obtain the following groups of terms
where a common factor has been omitted: '

/‘72; Py MR = ~
LB AR+ T2 0 AP e p MM [r,?;?‘,;/?‘,,;,;;fm,(ﬂ,é/
ne N rin”

It is easily shown that

) - ~ - - .
Br APi=(FaArR) (4. 5

-~

If vy = vp, the cross product vy ~ v, = 0. Also, V] A7Vp =
= -V A V], and for this reason the last sum of the above term is
zero. We can therefore consider separately the changing influence
of the Sun and Moon. To reduce the computations, we again
restrict our attention to one term of (1.6). Taking account of
r”Er = 0, we obtain _

5_;’;! raZr- éﬁ?’ A (faffaf/f))::é,_*_’g_f(c-g)[(/-k)ﬁ/fgﬁ,c,ef-,q.«%;]/
2 - . Hr AL

Using this expression, we can transform the right-hand side
of the equation AE + (C - A)P, taking account first of

[AF=fzriy CAF =_Tysjx \ /197

A’-IA v - z_ /2 Sind ¥ yco;zﬂj -fJ*z Cosd+% riind J\

P F=faaz # J ez iR (Qox +Eoyrz)
On. the othgr hand —
bo £ ([AF) JE A Xoly i //’—Z‘/=C/.z.ff
PoF (KAF) = Borza -auyz=c ' ,
Por (KA F) = x2sind+ 2eatd //fox-aa/jfw'q@ (o x’. aoz’s fis Xy
' . =Xeuin8+E7) _

where we denote by e, e', " the sums of the terms which include

the ap and 8y, and therefore they are on the order of 10-6.

AN

I

Hence

Similarly, we obtain
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Por (TaFl=yz -(1-k)a% |,  Fui (fai)= — Croxdate”, |

bwr L/ F% = X2 Sip¥- (i-x) &'e”

Here,. ' the terms including e, &', " can be neglected. Then the
equations (1.7) can be written

GJ/nﬁgéz-_ 3-‘&7 (c-a) [Jz+// k:]i] \

: G = 3"” (C-A) [1-k)E’
rF

Ceosd-Gsinl 8 « M (g-a) [Iz Strhd + (K-K}d”]\
_ _ "

In order to make an approximate calculation of the change in
angular velcclty, we substitute C.n for G. Then:

”;55=-— 3"% /C A L yz+(f-x)z/~\‘“-\\

< Jn,U

._\\

Bowm SEH CA (iplsa o (1-x) (o 14 & - A8 ) /.

S~ ‘ // (1.20)
nd = _ 3/”5;'4_/12+’” /z-zca;&}_/
s < §iné

e We remind the reader at thils point that oy and Bp are essen-
tially the directlon cosines of the polar axls of the Earth, wilith
respect to the XYZ system. These axes have an angular velocity

of the Earth around the instantaneous axis of rotation which

almost coincides with the direction of G. /198

Hence, we can approximately obtain, by appropriately choosing
the epoch from which time is computed

o = & cosnmd Bo = Csinnt I“I

o = 10° (order of magnitude), and then it will be

Iﬁh = [1-wx)hne /C‘ys sinf coSut =@ yipmtl] ot '.ff
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Since 8 and & change slowly compared to nt, we will consider
them as constant in the solution of the above integral equation
(by integration). We will have:

= (i) (bvind smnt+ 6 cos wt /

From the terms in the expre531on for ¢ and a, the greater
seems to be the constant term ¢, which is the Moon-Sun precession.
In computing thils term, we only consider a computation of the
amplitude of the osclllation of An. Using the values

- - - -é
(-K=o7 | €sm€ | unszou |

!

Y = 50" per year, or 6.8-10"7 rad per day, we obtain An = 1.9-10-13
rad per day. From this computation, we can conclude the following:

1. The angular velocity of the diurnal rotatlon of the Earth
and the magnitude of G can be taken as constants {(while in the
theory of the rigld body, they were constants in any case).

2. e, €', ¢" are small quantities, all of the same order,

and for this reason we can, with satisfactory accuracy, substitute
Egs. (1.20) by the following:

_3/H -4 1 gz /

anrs c 8 /
b (1.21)
j 3fH c-A /
g = xz
nrt c

¥, 8 = angles between the two figures.

These are the usual equations of precession and nutation " /199
The method of Integration 1s well-known. : : —

We observe that the elastic deformation of the Earth does
not influence the motion in space of the vector G, the angular
momentum of the Farth. Moreover, the equations of motion of G
are practically unchanged for any hypothesis concerning the
interior of the Earth, because for all acceptable hypotheses,
the tidal deformation of the Earth has so small an influence on
the form of the inertia ellipsoid, that its result can always be
Incorporated in the torques of the external forces.
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9.2.4. ‘Differentlal‘Equatlons of Motion‘OT'the Vector of

In order to complete the solution to the problem of the
motion of the elastically deforming Earth, we must find the
motion of the principal axes of the tensor I with respect to
the system XYZ, or vice versa, the motion of the system XYZ
with respect to the prin01pal axes of the tensor I, which we
denote by 0Y,, 0X,, 0Z,

These axes rotate with an angular velocity w. Hence, we
can write

A
. : : i (1.22)
G+ (6~ 31AG =0 .

The angular veloclty w = I-1G where I-1 is the inverse of
the tensor I. In order to compute the entries: of this matrizx,
we can-use the formula (I-7) = Q;,/D where the indices k and &
denote the columns and ro%& of the matrix, Qyx is the minor
matrix of the entry (Igy) multiplied by . 1(-1)K*% and D is
the determinant of the matrix.

In this formula, and to the finst.order of the small
guantities

~ T2 £ k) B s (sl = ==
A ca Al
= £ _frex) A Py KC-A) p g 3EM g, A p, L (1.23)
A cA A b7 7a3 . CA \1

We now project the vectors of Eq. (1.22) on the axes of the
system X5, Yo, Z, and we write the tensors in the form

. : o o 0 o Wi (
Po=1{ o o Pow= L ”; o wr
47 Jx w wa

~ 0 0

! O O v
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The tensor I ftakes the same form as in the system XYZ, but
it is understood that in order to compute its entries we use
the coordinates of the celestial body in the system Xo¥ply. We
write Eq. (1.22) as follows:

/

'éﬁf ]JC‘A@“E'A@;O/ (1.24)

We consider separately the sum of the ferms

2K g, S2A p, CE‘AG-'—EAcf:f‘/
24y Ac .

Q A G' T ——— -'4 } L-1 -] f o rb -]
= (C' ({ P yo - 2. //

¥,

On the other hand, we have the following‘épproximateaexpression:

"—“"ﬁé)‘g:cahz i o [ - /
poe (Jo'lj. Jal"Zo)’,

v

Hence

]

/E‘:—_i.?!_{f (C—AJ/:;" k"‘l.j (/‘o:."oyo—j-ox':?.-}::-—(/- Cﬁu/éﬂ@/

Py o~

and because C/A is approximately equal to 1, we have
£ o= (/- ke)S A
°/ 2 4G, (1.25)

_ The vector P, G is satisfactorily close to the direction of
G, and we can take to the first approximation

1960 {.5/16— :D’
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Then, 1n the expression for the tensor I-1, We can neglect
the third term and certainly the first, because EG = G. Taking
all these 1nto account, we can write Eq. (1.22) as follows:
5 = - - - /201
&‘—[x—z).g-“. Po GAG -(1-kKloAaAG -0 | (1.26) —
4 - ’

We write the equations obtained by projection on the axes of
the system X5Y¥gZ, as:

X+ lr-e)laina Y. (I-ko ) Cn2y = o

.

= 54/3}5 because. Gi. <

| L (1.27)
G @
‘(—(/-k}cxznx-(/—k‘ol(;, 2x =0 / |

é::o

where by x, y, z we denote the projections of the vector G on the
axeg of the system. It remalns to express the Qy, 2, 1n terms

of ¢ and 6 which are the projections of the angular %elocity on
the axes OZ' and OX. The position of the system of axes Xp¥pZg
relative to _the XYZ 1s defined by the Euler angleg u, v, €,

where u = XOM is measured on the plane X0Y, v = MOX, on the
“plane Xo0Yo (OM = intersectlon of the planes Y,0X, and XOY).
Since the angle, 6, is small, we can construct on the plane X0Y
the angle ¢ = XON = u + v. We take

- ‘\A_“
“ D

" .
) = 3 = I‘:;O‘1 = 90~ X0y o= or¢
Then, it will be @ X9Xe = YOVa=§ Y ¢

— Qu = send Stng iy - cos cpg p Qr = - Jin? cor g y +J‘mg:9-

Substituting these values in (1.27), we finally find

X+ C-ela?nyY = Cn f1-ke ) (~sind cos g ¢ mec;Qy j

Y - (-r)@nx = Cn (1~ ) (0ind 2154 ¢ +cos b/ i: (1.28)
o Co.
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9.2.5. Integration of the Equations of Relative Motion of

“the Vector of Angular Momentum

Integrating the equations of relative motion of the vector
of angular momentum, we can use these expressions for y and o
which are given by the theory of precession and nutation, which
is based on the hypothesis that the Earth is a rigid body.

We write the total angular velocity as the sum of the
relative angular velocitles w = w' + 2.

Projecting on the direction of ¢ -~ h= g+ :/'zcorD/

from which 1s obtained

=» g,;hf-/c;} cord ot = n, !/ (1.29)

The more important term in the expresslon for ¢ is the Moon-
Sun precession. The change in 6 is not important. Hence ni 1is
practically constant. Using it in (1.28), we have

Xt (1-k) &Y = Cm (1-ko) (-5inD coshi € &rsinh, £

o {1.30)
Y = [k )atnx = Chn (l1-ke) (5ind dti ni b & # cos by thl

K

The expressions for precession and nutation 1n Zongitude and
obliguity are
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> %:pf‘f‘ SN Jin gt - ﬁ:gofﬁN; Cof pi l‘/
Hence ;/z = o # £ A Hicol (i { / J':: ENC fei St ui ¥ !
. ' ‘ (1.31)
We write - Mipti = Bi+8 , Niwi yonl= 80 -8B r; (1.32)
Then relations (1.30) can be written as follows:
\ o A (13331
~klatn Y= Cn //-A)[‘P Sinf cos i b L& cor (rt il e S0 cor oy It

N k)@ = Ca (1ke) [Emd St pat g L8 St (o, 2 i) E = 280 SnCae -pijt]



The solutlons of these equations without the right-hand
slde are:

X = Ucos (/1-x)Q%nt+ Vs //—/()Q’zhfj
|

| Y= Virn //-A’} cindé + Veosr (1-#/ aind | S (1.34)

where u, v are constants. Then, 1In order to obtain the solutilons
considering alsc the right-hand side, we first take u, v as
functions of time. Then it will be:

X = U cos{1-k1Q%t + Vo (/-klaint ~ (1-k) @atn ¥
N = Usin (B 1ol —vcor (&) a*at + (r-x) atum x

and substituting (1.33), we obtaln /203
U= Cn L1-Kol [PJmﬁ cos s +Ci-2]) ot h]z‘ ~ S8 o1 Lnrpis (1 k] a'n T4

+ $81 cor [ni b # (1- k’)dh]?‘.//’f

f

Y = Cn (/ Ko)[ L stn .{fh[#usr- (7~ K/cr 4 /4 - S8 yun [‘Q-ﬂ-ﬂ,f-ff—-k}a L

* S8BT ste Lhcpi4(1- A’)an.]* _77

Integrating these expressions, we take singé as constant.
Integrating and rearranging, we obtailn:

X = Uo tog (1-2]a@%nt + Vo Sin(1-icla*nt _ (i (1-E0d P atn 9. dth b
e (-] ate

L Ch Ko s Mg s - Rk gp (z.,w It ~Cop D5 F Mk it B b gyl g
< D4 od LS+ O-xrlain 2 He—pi(1-K]ghy

Y Uo stm (1 -xy@iut - Vo Cos {t&]atmt _ L2 (1-te) P S1uD Cosnet
' /7’,}1-{- (!—KJC'&PI

- Ca “ g My sind = A (g log ol b o 12K o 4 A Send F for s (s -y B
2 Tt o+ (1-%) afy % ing - pp ot (1= K]y
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Where wgrand vg are arbitrary constants. Equations (1.29)
and (1.35) completely define the motion of the system XYZ
relative to the XpY,Z, system, and because the motion of XYZ
in space (for example, with respect to X'Y'Z') was found
earlier, we can conslder that the problem of the rotation of
an elastically deforming Earth has been solved.

- 9.2.6.  Polar Motion of an Elastically Deforming Earth

Using the formulas employed for the reduction of observa-
tions, we do not take account of the observed declinations of
the stars, which are the angular distances from the plane of
the Instantaneous equator which is perpendicular to the instan-
taneous axis of the Earth's rotation, because in proving these
formulas we do not take into account the result of the diurnal
nutation of the coordinates observed.

Starting from formulas (1.21) ($ = ... 6 = ), we
describe the motion in space of G, and not of the 1nstantaneous
axils of rotation.

It is concluded that the formula of nutation of declination
gives the change 1n the angular distances of the stars from the
plane which is normal to G. We call it "the plane of the
dynamic equator. In computing the latitude according to the
observatlions on the meridlan, we use the formula ¢ = § + Z,
where Z 1s the observed zenlth distance of the .star. HEnce,
we find the angle between the vertical and the dynamic equator.
When we determine the position of the pole from the observa-
tions of latitude, we define the position of the pole as the
point where a straight line colnelding with the vector &, not
the axls of rotation, intersects the surface.

The difference 1ls not essential, because the angle between
G and _does not reach 0".002. The 1nstantaneous axis moves
around @ on a conical surface with a period approxlimating a
sidereal day, and hence the observed declination shows a diurnal
term which certainly 1s not taken into account in computing the
phenomenal position.

The reduction of the auxlllary system which is related to
the vector G (system XYZ) instead of the instantaneous axis has
certain advantages in developlng the theory of the rotation of
the Earth.

For the reduction of the astronomical observation, it is
of less 1lmportance whlch system we use. In any event, in this
case 1t 1s more accurate at the beginning to use the system of
the dynamlic equator. Then we must define the latitude and the
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Instantaneous pole as we have done previously. We denote the

coordinates of the pole by x,y. In accordance with the
definition, we have :

o = (1.36)
We also write /202
oo | : _6/3_3 o P Vo = Lo
Ca Cu / (1.37)
from (1.35).
=% XY= Wo Cos (/&1 o Stnli-klatnt - (1-ke] P gead St s £
' 2, (1-K)at,
(-l [ Jin (st} 4+ 597 din Gag—tos)t ]
S U $1n (1-k] atmnt « Vo coc{7-k1atnt - (’/-—ka)_’b_{f.ﬂ_ Cor ¥y £

s # (1K for%y s
_lr-ke) L 59 cos (oo bg) €+ £ 9l cor Cop~te; )2 ]
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Considering the sidereal day as the unit of time, 1l = 27,
The period of free motion can be found from Ox.

_2‘2 =//;k)a‘ = ~ & C;"f j i 7
2 _ b= (k) =4 20 | pence /—k:\ 2%_?/

We have A/(C-A) - 304, T = 433, I ~ K = 0.72. _
The motion of the ocean's water reduces the Love number K.

According to Molodensklii, the correction is -0.04. But this is
proportional to K 3z of K (there is a formula) -+ I-Kg = 0.76.
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is taken from Woolard. The arcs are in the note of the Astro-
nomlcal Yearbook. In Table 1, the values of these coefficilents
are greater than 0".001.. ‘gl does not reach this value, so

only 9/ is given. It must be multiplied by (I-K,) and substi-

tated in (1.38). If we further multiply the first of these
equations by cosi and the second by sinid and take the sum, we
will find the change in .latitude at a point of longitude A.
Since n1t + A = §' is the sidereal time, we obtain the following
expressiocn for the forced change in latitude:

i‘ dg

The information for the computation of the coefficlents

” 4 o . > .
=~ 0,00c¢ 5/n & - 070051 sin(&~2c/-0"00225in (§-2¢ ) -/

/
N

- Ofoafa $in (-2 - a3 )= 0% ooo itn LS-3 ¢ 1) ’L/(l 41)
* 00009 £i'n (S~ ) e |

-~

TABLE 1. /206
e - ' o - L !
#e sind) - M = SIS {
_ﬂﬂf L 5  hae by # (1~ Jaty o
N & N T PES
o . L. - Goe <, g . o Lok i -
v DR 8 P St . Dy BT
TN @" 83586 | w9, 2/00 - 0y Oocots e ofoo:e
A B S R S | '
W ¥ i . .."-i o . e , . : .&{- w:,,» L )
,-;ﬁgp,50§6 " 0,5522 ' 0.005#83%< 00,0029
2¢ 10,0810 |V 0,088 .0,0x869 .. | - o0006x
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.2 ; i L 0,0136 . - 0,0/83 - 0,0F88% O50Q 18,
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In this way, we found a synthesis of the small changes in
latitude, of a period about equal to the sidereal day. Oppolver
first showed that these are consequences of the metion of the
rotational axis 1in space, and he also found thelr expressions
for a rigid Earth.

The elastic deformation of the Earth leads to the same
relevant reduction of the coefficients of all the terms of

Oppolver, because 1n A4 the term I-K, appears everywhere. This
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and the increase of the period of free nutation are the only
evidence of the influence of the deformation of the Earth con
its rotational motion, since the deformation has practically
no influence on the motion of G in space.

According to what was said in thé introduction, we will first
find the equations of motion of the system XYZ with respect to a
fixed system X'Y'Z'. In the following, we will find the change
in the inertia tensor due to the elastic deformation of the
Earth. The fine point of this calculation, which underlies the
whole elastic consideration of the Earth, is that we can decompose /207
the Inertia tensor of the rotating Earth into two tensors Ig, Iy
where Io corresponds to the undeformed Earth and I, to the change
due to rotation. This decomposition is valid because the super-
position law holds.

Exactly this decomposition constitutes the greatest step
of the theory of elasticity, because since we assume elastlcity
to.belvalid, under no external cause (force or rotation) will the
Earth regain its initial shape. I.e., the tensor Ty, expresses the
irrevoecablet: deformaticn of the Earth due to rotation. If we
conslder, besides rotation, the influence of the Sun and Moon,

—~» = /s ¥ Lt Ty e

In order to substitute the
tensor I in the equations of
motion, it is necessary to
define certain systems.

On XO0Y - plane of the eguator
(Zz = I)

On X'0Y' » plane of the ecliptic
_ (Z! '—‘E')
G = vector of angular momentum
¥ = Bﬁipcipal axis {(direction)
W
4o = principal direction of the
tensor Z,

XYZ rotates. with « around

Z¥, and wlth @ around X'Y'Z'.
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Finally, the lnstantaneous axis of rotation is close to Q.
Substituting the flnal form of I in the equations of motion (from
the angular momentum of motion), we obtain the equations of
recession and

Lo 3EH A 1y, G ¥ A y2
- pps < Sigd ! o C /’

We observe that the elastic deformation of the Earth does not
affect the motlon in space of the vector G, i.e. G and w can

be considered constant. And since for all acceptable hypotheses
the tidal deformation of the Earth has so small an effect on
the shape of the 1lnertia ellipsold, the equations for G are
invariant for any assumption about the interior of the Earth.
We therefore observe that the above equations yleld the motion
ef G and not of the instantaneous axis of rotation. Therefore,
in the formulas for the computation of the declination, We have
essentially measured from a plane |G -+ "dynamic equator." So
the position of the pole also 1s defined as the point where

G intersects the globe. The instantaneous axis moves around

G on a conical surface with angle =0".002 with period almost 1
sidereal day. Therefore, the declination willl alseo show a
dlurnal term as well as the motlion of the pole, because the
latitude observations are:made from G.

We seek now the differential equations of G relative to the
Earth or the differential equations of the system 0XyY¥yZp with
respect to OXyZ or even the differential equations of OXYZ with
respect to 0XpY¥pZg, rotating with angular velocity w. We find
the relations i T
Y+ (-8l Yy = Ch //-zo/(-.m;.‘i cas-;o,wfsfnp?)

Y _ -kl a®n X = Crn (k) ( 3ind sing ¢ sco1gd]  thus Gad = of
i (aig) s
ZA::CD‘ P

where X, ¥, Z are the projections of & on 0XoY¥gZ2p. The integration

of these relations gives the equations of motion of XYZ with
respect to 0XpY¥pZp. The angle between G and w 18 of the order

of 0".002. From the integration of the above relations and after
substitution of

Cer Crr i
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we find the formulas which yield the coordinates of the pole.
This is because Cn = G and %, y = components of G:
Y ‘

~ GuE =X, GE=X |

™~
no
(=]
D

From elasticity theory .we derive

2n - f-xlofhn = Li-ul S8 247
7 - c "L

(we define the sidereal day as the mean time)
A =308 (1 - K) =0.72 + T = 433 days,
i.e. we find the perliod of Chandler.

Thus élasticity theory, on the one hand, suggests the solu~
tlon with superposition, and on the other hand it results only
in the increase of the free period and the .decrease in the
values of the nutational terms. It remains now to compare the
modern theory and the results obtained by observations. For.
this, we willl examine if the forced motion takes place according
to the assumption of an elastic Earth. After a brief presenta-
tion of the manner in which we obtaln the constants, we will
examine whether the value of, for example, N is different in
theory from that 1n the observations. PFinally, we will make
a comparison with comments.

9.3. Forced Polar Motion of the Earth

' 9.3.1. Introduction

From the kinematics of a rigid body it is known that the
motion of the axes of rotation of the body in space is always
accompanied by a displacement of the axes with respect to fhe

‘body. Thus, in the Earth, the nutational motion of the instan-

taneous axes of rotation is followed by a cyclic motion of the
pole. Later, during 1ts rotation, it seems to cause small

" changes in latitude, the period reaching 1 &ay, which are known

i

as the terms of Oppolzer. In Chapter 1(6), the following
expression was obtalned for these terms, starting from the
hypothesls that the Earth is an ideally elastic body.

/210

—

— 00066 sind - O/0051 sin (§-2 €)_ 0002z sin{S-2L)-0/010 sin ("r'ch-qj
- 0,000 sin (S 2C+7') 1070009 gin [’J-ﬂ.)/
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where S is the sidereal time at the position L, ( , ¢Q' ,T!

aﬁathe mean length of the Sun, of the Moon, the eastern point

of the orbit of the Moon, and the perigee of the Moon, respectively.

We will now try to find whether the observations verify the
validity of thils theoretical law. The problem obvicusly is to
search out the changes in latitude from all, or at least from
some periodic causes, as shown in (31). We have already shown
some difficulties arising in the interpretation of the results
of analysis of the observations. We now consider them in detall.

The fact of the lid-day nutation in declination can be
expressed by the formula

/

If the exact 1l4-day change in latitude is not obtained by
this formula. then, terms appear in the change in latitude with
arguments /o ¢ _ o/ fand Cz LHT )and because 1in the definitdon of

‘A’Im_oj’ogs win(Zc—o0 )+ 07003 in (2 ¢ +a)!

latitude according to Talcott, the stars are observed when the
Sun 1s in the meridian, the sidereal time is always equal to
the right ascension of the star at the moment and place of
observation. Therefore, the arguments (27-a) ('ng£7j|

coincide. Hence, if during the change in latitude a term with

argument(2 £ - “?‘E*Ub 1s discovered and its ampllitude has a different

value from the theoretical one, this can be explained as an
inaccuracy of the coefficlent of the first term in formula (3.2),
and also as an inaccuracy in the theoretical expression of the
diurnal term of the Moon. This is the second term in the right-
and side of (3 l) :

EATR RIS B LV R S L TR B ‘

In general we may consider each of these explanations, but
we must justify theufact that we are golng to choose the one
which is the most approprlate for both. the theoretical resesrch
and the reduction of the cobservations.

Theory and observation could find at any instant the
position of the system of the principal axes of inertia with
respect to any flxed coordinate system. For this it is enough
to take as examples three equations giving the dependence on
time from the Euler angles, in a way in which the relative
position of the two systems with the same origin is defined.
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However, these equations are not appropriate, considering
the rotation of the Earth. They are complex and not easy to ‘
solve. The solutlon becomes much simpler and descriptive if
we use an auxlliary system and define its motion onithe one
hand with respect to the fixed system, and on the other with
respect to the principal axes of inertia of the Earth. We are
free to choose such an auxiliary system and it seems that there
exists an arbitrariness 1n the explanatlon of the results from
the analysis of the observations, considering the Moon terms in
the change in latitude, due to the arbitrary system. The 0Z
axls of this system can be taken, for example, as the instan-
taneous axis of rotation or the axis of angular momentum, but
if we assume that the Earth 1s composed of a solid (rigld) erust
and a fluid core, we can take it as the axis of rotation or the
axis of the angular momentum of the crust.

In each case, obviously, we will have slightly different
- equations of motlon of the auxiliary system relative to both /212
the fixed system and the system of the princilpal axes of inertila
of the Earth. In Fig. 7, 0Z 1s the axis of the auxiliary system
of coordlnates, OZ' is the vertical, 0S the direction toward any
- ~ given star. We ignore the tidal change
4 / of the vertical and the proper motion of
!z z’ ! the star S, so we can assume that neither
0Z' changes its direction relative to
the principal axes of inertia of the
Earth, nor OS its direction with respect
tc the fixed coordinate system of axes,
for example, the system of the ecliptic
at an 1initlal time.

g We have noted that there are some
Fig. 7. posslible directions of the axis 0%.
Nevertheless, all thege are so close
together that in each case we can take the plane of the diagram
as the meridianal plane. We place

°z~’os=z 2'02=./, 208 = p = 2=P*f," (3.3)

4

Assume that the dependence of p and f on time is taken
ont the basis of some assumptions about the mechanical properties
of the Earth. From the observations we can obtain the empirical
expression for the change in Z. " Thus it 1s possible to check
the theory by comparison with the observations. However, the
results of such a comparison will not show how much of each

error we find 1s attributed to p(t)} or to f(t).

We return now to the matter of the Moon terms in the change
in latitude. Earlier, these terms were Justified as an
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inaccuracy in the 1l4-day nutational term which enters the
equatlion of motion of the 0Z axis 1n svace. (This is the /213
perlodic change of the argument o»-_ . "and not the tidal

change in latitude. However, as was shown (in the modern

theory), the formula of nutation describes the motion of the
angular momentum G which remains the same for any loglcal
assumption: about the mechanical properties of the Earth. Hence

1f we take the auxiliary axis 0Z along the vector G, its

motion in each case satisfies the equations obtalined by the
assumtion that the Earth is rigid. Then the difference between
theory and observed changes of Z can be totally attributed to

the inaccuracy of the expression for the angle £(t), which

in the equations determines the motion of the auxiliary system
relative to the principal axes of inertia. In any case, £ = 90°-=
- ¢. Hence, the comparison with the observations can answer the
question of whether the expression for the forced latitude change,
which is obtained by considering the Earth as an ideally elastic
body, corresponds to reality.

For this comparison we restrict our attention to the B!
term of (31) which corresponds to the lunar diurnal term. The
first term enters as partial (part) constant quantity in the
value of the latitude, cobtained from cobservation of an individual
palr. The coefficients from the other terms are sc small that
they are not easily determined with accuracy from the observations.

9.3.2. The Lunar Diurnal Term in the Latiftude Change,
According to Information Given by the I.L.S..
Initial Conditions and Plan of Calculation

The harmonic analysis of the I.L.S. observations 1n determining
the amplitude and phase of the lunar diurnal term in the change
in latitude requires a long calculation. In trying to abbreviate /214
it, 1t 1s necessary to put the initial conditions in as compact
as possible a formula. '

For this reason, we divide the 96 pailrs of the I.L.S. program
into 24 groups with four pairs in each. These hourly groups, )
in contrast to the groups of 2 hours, are used regularly in
the observation work of the I.L.S., and they will be called
"links," a term used by us in the description of the convergent
ohservations of the two zenlth telescopes in Poltava. The mean
right ascension of the stars, which forms the links, is 0.5,

1.5, ... 23.5 hours. We also choose the complete observations.
of the link, which are those from which no pair was neglected.
For each complete link we find the mean value of the latitude,
which 1s the arithmetic mean from four instantaneous latitudes,
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obbained f r o.in: observations of.the pairs which belong to the
link. All the links not completely observed are disregarded.

Then the initial quantities of the material from Carloforte

were reduced by 18%, from Ukiah by 7%, and from Mizusawa, 31%.
To compensate for this abbreviation, we are able to obtain
greater homogeneity (compactness) of the given information and
simplicity of computation. After this preparation, we take

the residuals of the latitude which are obtained for separate
links from the smoothed-out curve of the latitude oscillation.
The residuals denoted by 4¢ are subject to harmonic analysls

for the lunar diurnal term. The first step is to arrange the

8¢ values according to the phase of the argument /2 ¢ - . )and

after that, of the argument fzé“hXI‘where ¢ 1s the mean right

ascension of the palr constituting the link. For this, it is /215
necessary to take the mean value of twice the length of the
Moon for all the mean values of the observations of the complete
links. Thus, we construct auxiliary Table 25,
TABLE 25.
2¢c Dexze ‘ Srdereat i 2 | Dexte | Sidereal
/ 2 3 [T 2 I
h —_—— e ———— .. T .- - JU
(/) 19/3. 7an ., /247 o 28 2% i/le Jaw, /3 .30 o /3
/3. 04 .87 /3 /9.8¢ .70
o | /3. 61 &2 | 14 2043 .27
3 ; M 18 | 99 s 2/.00 B4
6 . 74 56 1 ! 2057 4t
5 | /5.3/ A3 S 4 ) 2241 |
| : 98 |
¢ /5.88 | S f 227/ .56 |
7 645 .27 [5 9 2323 43
8 | /7.02 [ .8y F; Zo ’ 2385 o
9 759 | 42 {J 27 2492 .27
{g g6 | .99 4 2z ‘ 7499 .B¢
2 /873 l .56 J 23 2556 | 4r |
/9.30 A3 | 26.43 .98 |

In column 1 we give 9€7fbr the mean points of the time

intervals between instances given in column 2 in Universal time.
In column 3, we give the corresponding mean Greenwich times. We
do not give the complete table included on p. 78 [sic]l and covering

the time from 1899 to 19354,
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We will illustrate the method by an example. Assume that
we with to find the approximate value, two times, of the longi-
tude of the Moon at the mean instance of observation of the
fifth link at Mizusawa the night of January 18-19, 1913. The
local sidereal time of the observation of this link 1s its
right.ascension, which is 4h.5. Because :»' the longitude of
Mizusawa is -9h .4, the mean value of the observation of the
pair is always l9h 1 of the sidereal time 1n Greenwich, l.e.

.5 +(-9.4) = 19.1.

This is equal to 0.80 for a fraction of a day. In i.z /216
Table 25, we find that the observation time lies in the interval
between January 18.73 and January 19.30. Since the first time
corresponds to 0.56 in the column for sidereal .time and the
second to 0.13, we find that the two times of the longitude of
the Moon at the time of observation were approximately 11.

In this way we divide all the A¢ values into 24 groups,
acccording to the argument 2 <, expressed in hours. Moreover,

for each group we compute the mean value of A¢ and put it in a
square table, a sample of which is given in Table 26.

In the square entries of the table, we wrlte the values of
the arguments o l-a, and 2 (rcz"/ . After this, in order to

obtain the mean vaiues from all the A¢ values corresponding to
equal values of the argument, 1t 1s necessary to divide the
sum of the numbers in a scale by 24. So, for example, the argu- /217

ment é’ffaf is equal to 1 hour for the A¢ values which we write
into the square entries of the table. Simllarly, we have the
mean for the argument 2¢+a@ by dividing by 24 the sum in the

next dilagonal. We use the values of the Instantanecus latitude
at Carloforte, Mizusawa, and Ukiah from 1899 to 1934. During
this period, the program of observations changes three times

at 1906.0, 1912.0 and 1912.7.

To calculate the reductlon at theuphenomenal pesition, the
central office of I.L.S. used the (reducing) gquantities published
in the Berliner Jahrbuch [Berlin Yearbook]. The formula for
the computation of these quantities changed slightly in 1916.

Some small nutational terms were introduced, not previously
taken into conslderation. Therefore, we dec1ded to divide the
total sequence of observations from 1899 to 1934 into five
cycles: (1) 1899-1906.0; (2) 1906.0-1912.0; (3) 1912.0-
1916.0; (#) 1916.0-1922.7; (5) 1922-7-1935.0.
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TABLE 26,

<

0% | 1% | 2% | 3% | ¢i5 | 5% 1% | 7% | 875 | 975 0?5,

0%*s
15
25 O
35
&5
5.5
£S5

85 a
95
/0.5
o3
28
/35 : '
tus
/5.5
%5
175 |
85 |
195 1

205
2.5

229
23is

First we elaborate on the observations separately for each
cycele. The values of A¢ are obtalned from the observatdons for
each link and are divided into 24 groups, as we explained,
according to the argument ' g2¢. . Then, in order to avoid .ue

error in the declination of the palrs that we may find (which
might happen) in the composition of the results of separate
cycles, if the observations are not similarly-distributed to
the phase, we do the following:

We take the mean value for each column in Table 26. We
subtract this value from the A¢ values of the separate square
entries of the column. Affer that, we combine the results of
the obhservatlons from the first three cycles and the next two

cycles, so that we find the mean values of A¢ obtained separately

from the I, II, III cycles and the IV and V cycles. In order

/218

to allow for differences in the numerical values of the observations,
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we gave a welght of 1 to the results of all cycles except the
Vth cycles, and a weight of 2 to the results from Carloforte
and Ukiah. Thus we obtained:.!two tables for each station, so
that we have six tables in all. We glve one of them as an
example, the 1900-1915 cycle for Carloforte (Table 27).

Under the heading "diagonal sum," the sum of the numbers in /220
the diagonal is given in the first column (descending), golng
from the upper left corner of the table to the lower right
corner. In the "ascending" coelumn, the sum of the numbers in
the dlagonal is given from the lower left to the upper right
corner. Under the heading "phase" we glve the values of the

phases of the arguments Z2c - - and 2@""_"‘? corresponding

to these sums. The A¢ values in Table 27 are given in 0".001.
The mean values, which are /these sums divided by 24, are given

in Table 28 in the column with the heading A¢'m for the 1900-1915
cycle and A¢m for the 1916-1934 cycle, expressed in 0".001.

9.3.3. Corrections of the Nutational Term, Argument .. . - T \ /222

Preliminary analysis of the values of Aém showed that the
expressions for the lunar diurnal term obtained from observa-
tions in the years 1899-1915 and 1916-1934 differ systematically.
In an effort to explain this disagreement, we gave particular
attention to the fact that from 1916 on some new nutational
terms entered the formula, giving the quantities A' and B' in
the Berliner Jahrbuch. Among them, the following exist

88 = - Olow sin (2¢-8)cos a + 0108 cos (2¢-d3) sina | (3.4)

Since earlier than 1916 this term was not taken into account
in the analysis of change in latitude, there appeared a fictiticus

term with argument < & -Jb| . The introcduction of the correction

due to this nutationsal term in the initial information would
requlre long additional calculations. However, we can avold
making these calculations if we apply the following method of
approximation, allowing for the introduction of the correction
according to the mean values A¢m. These corrections are denoted
by Adm.

We transform expresslon (3.4) as follows

|
48 = P cos cfbf‘/‘_”"r‘l_; | (3.5)
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where ) ) L
-0 06 sin (2@ —a) ~ 0,002 517 (Zcra)

=

#” ( .
V= 006 cos (2€-a) #0002 <o (2 +°'/f (3.6)

Starting from (3.5), we obtaln the expression

4 = ‘D:-" Fcor 42 » Z/ffd/b/z/
where n is the number of values of A¢ from which the mean value
A¢m is formed for a given group. Since the values are distributed

over phases @ almost uniformly, we can:substitute the sum by
integrating the previous formula which becomes

, L .. , /223
K4 cos = or Jh.o. i
14 e e
‘_.i’ . — / JB;
‘ a';-((ﬂn % = & - %o /43, Jim J3 -d Jb

where (7 and i, are the values of the longitude of the position

of the Moon at the beginning and end of the observation cycle.

In computing these values, we took 1899.8 for the beginning of
observations 1n Carloforte and Ukiah and 1900.0 in Mizusawa.

1916.0 was taken as the end of the cycle for all the above stations.
After the substitution of the arithmetic values, we finally

obtain, for the correction of the nutational term with argument

2 a- Jlf«;for: Carloforte and Ukiah

‘:‘
dEn = 0 000 sin (£& - a) + 0,002 cos (¢ cz’-a/;'

and Mizusawa

ZJ‘PA::O"’ODZI cos (2 @_q) [
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The corrected A¢'m values are in Table 28 under the heading
Adm.

" 9,3.4%,  Results

We can classify the A¢m values of Table 28 as follows:
Cyecle 1900-1915:

Carlo- _

‘ o . N
oareo D,0/08 Sip (Zd-a-/8%]+ ofvowo sin (2¢Cra +39°)

+1 +& e

Mizu- —= 070079 sin [(Z2€ ~a-39°)+ 0 002¢ Jip (27 +a=158")
sawa ’

T22 * 7 2/ T 46

Uklah —~a 0Yomu gin (2@ -a-iso)+ 070035 sin (27 rq-16°

Z23 22 T/7 z2z2
. . . ?\

Cycle 1916-1934:

Carlo- —= 0/0/08 sin (2¢ ~or-11°] +07 0032 §in (2¢ra- 2*)
forte '
. 216 £9 k27 224

Mizu—!
sawa

— 0" Cous sy (2¢~a+5° )t 0%00ue Jin (2a¢a ~63°)

x22 F29 t26 30

. '\‘ ¥
a v

Ukian - —~» O]omy sin /2(—@-3# +050043 (2qro #46°)

: ' *1/8
7 I q 5

The differences between the observed values and those which
are computed from these formulas are expressed in multiples of
0".001 and are given in Table 28 in the 0-C column. The numbers
in these columns are used for the determination of the mean
errors of the values found for the amplitude and initial phase
of the lunar terms.
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The expresslon for the lunar diurnal fterm can be written
as follows:

dow =t Sin (Z20-q)+ M coy /2(,«.@),;/

| | (3.9)
+ Mz Sin C2aral #+H, cosf2¢ra)/’

which is more appropriate for the combination of the results of
some sequences of observation. A summary of the values of the
coefficients M1, Nj, Mp, No is given in Table 29. An important
"part of the calculations for the lunar diurnal term was carried
out by Miss Vertushenko, and the preliminary results of the
calculations were published simultaneously with ours.

9.3.5. Results of the Research of Other Authors

The study of the lunar terms in latitude change was, until
recently, restricted to the derivation of the major lunar half-
diurnal tidal term, with argument 2 ¢ -2 & , where 8 is the local

sidereal time. The first arguments for the discovery of the
lunar diurnal term were almost simultaneously and independently
presented:s by Sekiguchi, Morgan and Popov. They first explained
this term, as Fedorov alao did, as an inaccuracy in the lh-day
term. The fact that we now present is a different explanation
which does not prevent us from using the results in the general = /225
study which follows. In the determinaticn of the coefficients

of the lunar terms, Sekiguchl did the fellowing. He generally
reconsidered the results (abstractions) of the precession and
nutation formula, and he obtained computed values for the coef-
ficlents which were different, for some terms, from those that
Oppolver found. Thus, for the 1l4-day term, according to Oppélver
we have '

df = oops sin @ coy 2€ -0/008/ coi @ Jin Z¢
while Sekiguchi's result i1s given by the formula

i T ’ . f
(4= - 0" 091 sip (2¢ -a)+ 0003 sin (2¢+a}!
‘ ]

“4d= 0095 uin a cos RC ~0%,088 Coro din 2¢
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or in .the form (3.2). If the last expressilon is correct, and we
take formula (3.2) in the reduction to the phenomenal position,
a term appears which is

P ) . \
07006 «inf2¢-a)’

To this we must add the lunar diurnal term of Oppolver, coinciding
by chance with the last expression for a rigid Earth, so that
we have as the sum

. /r
AE= 0002 iy (2e—q)
- e "

If such a term was discovered 1in the change in amplitude,
according to Sekiguchi, this could be taken as a proof that his
theory for nutation is better than Oppolver's. However, we do
not have such a valid conclusion, because the dlfference between
the formulas is explained by an error made by Seklguchi. This
error was shown by Woolard (see introduction). As initial
material for the determination of the amplitude of the lunar
sidereal term, Sekiguchl used the data from Carloforte, Ukiah /226
and Mizusawa from 1922 to 1934.

The above observations concern only the interpretation of
the results. They agree, as a whole, satisfactorily with ours.
We restrict ourselves to this remark, and we do not put the
results of Sekiguchil in the general summary because (1) the
I1.L.8. observations for 1922-34 deal with more material than we
used, and (2) the method of reduction he used is subject to
some objections.

Morgan first announced the results of his study on the
14-day term at the seminar .on astronomic constants in Paris
(March, 1950). His results were based on the interpretation of
the 4d-yearly sequences of observations with the PZT in Washington.
After this, complete materlal was worked out. 13-yearly sequences
were used, but they were not taken one after the other, but
with some interruptions, so that the total sequence covers an
interval of 19 years.

Morgan presented the lunar diurnal term in the formula

:'?o"’ G = (os 2 &.6ip a~0,92 Sin 2¢ CaJ'ar)Zk’/
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and he determined the coefficient AK from observations. We
rearrange this in the formula

F~Fe = 0Q64k win(2¢c-al)rgoy & Op (‘?C?"CI}L\

and we note that this coefficient practically coincides with the
coefficient My in (3.9). Morgan found that AK = 0".Q067 %

+ 0".0020, which coincides with the theoretical value of the
coefficlent of the corresponding term in Oppolver's formula.

On the basls of these, Morgan concluded that the lunar dlurnal

term in the change in amplitude at Washington is totally due to /227
forced nutation of the pole and thus the coefficlent of the 14—

day term does not require correction.

From Morgan's work we can take only the value of M;. The
results are given in such a form that it is not posslble to
calculate from.them the coefficients for other terms in expres-
sion (3.9). From the analysis of the observations of two bright
zenith stars -1'n Poltava, Popov obtalned a conclusion opposite
to that of Morgan. He found clear proof in these observations
of the lli-day term, and explained this as an inaccuracy 1n the
value cbtained for the amplitude of the 1lU-day nutational term.
From 780 observations. of Alpha Perseus and 925 of Eta Ursae
MaJoris, he found that

/;A, = 07028 cos (’?(1‘232"}

J{.rx?.= oro34« cog (2(7‘-99")

-

If we put these expressions in the fofmula in which we have
the lunar diurnal term, we obtain

'
1

dpa = 07028 din (2a-a +/2°) )

der = 0,034 din (2 C-a-s57) |

As we see, the amplitudes of these terms are approximately
taken by Popov as two times greater than those taken earlier.
It 1s certainly necessary to take into account the fact that
his results include the main lunar half-diurnal tidal-.term also,
but it does mot seem possible to attribute the difference to it.
Nor does 1t seem possible to explain it as something due to the
untrustworthiness of Popov's results, because the separate reduc- /228
tion from three sequences of observations gave expresslions for
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the lunar diurnal term with enough (common) agreement among them.

Thus the matter of the cases of irregularly great values of the
amplitudes of these terms, obtalined from the observations of
the bright zenith stars in Poltava, is still open until more
general material is collected and reduced. (A reduction has
already been made by Popov, and thenew result is inogood
agreement with (3.13).) For the time being, in relation to

the relatively small numbers of observations, the results of
Popov are not included in the general recapitulation.

- Attempts have also been made to find a lunar diurnal term
in observations with two zenith- telescopes in & common program
which was introduced in Poltava in 1949 and still continues.
Matveyev used as initial material the differences between the
values obtalned for the latitude from morhning and night obser-
vations for the first 3 years. As a mean value for the two
instruments, he found:

i
Ay = 0% 0/¢ yin (2€-a-29/ |

Ty - 2/3 é

With the same observations but for a greafter periocd, Filippov,

using a method similar to the one we used in the analysis of the

I.L.S. observations, found the following value for the term
considered:

/
'

/

£26 /2

-

4s = o'orze . §in (2 ¢-ar&

Finally, for one more time studying the lunar diurnal term
for the difference "evening minus morning" and making observa-
tions for 6 years, we found

de = 07 00%0 . 5/ (fc{' —x +21°)

f30 /9

In order to sum up all the results, we remark that, in
the observations at Poltava in the 1949 program, a. lunar.
diurnal term does indeed exist with amplitude exceeding.the
corresponding term 1n Oppolver's formula. <Certainly the number
of observations from which these results were obtalned is still
not satisfactory enough to be sultable to be included in the
general summary. '
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We give the expression for the lﬁnar diurnal term obtained
by Orlov from observations with the zenith telescope at Pulkovo
from 1915 to 1928.

g 070127 sin (2¢0-0~3% # 070027 $in (2€Fa -56°)

+ /¢ +2Z 22 + 4

9.3.6. " Correctlons in Véertical Change Due to the Tide

Besides forced polar motion, the tidal changes in the
vertical can be a case of small period change in latitude. This
fact must be excluded, which can only be done by a calculation
based on tidal theory. For a rigid Earth, we have the follow-
ing expression for the tidal change of latitude:

bow_ L. Ov i

where o is the radius of the Earth, g is the gravitational
acceleration, and v is the potential of the force due to the
tide. Next is the sum of the pericdic terms from which we use
only the one with the same period as the lunar diurnal term we
are interested 'in, - which is 01. Substituting in the previocus
equation the following expression for this term:

'~ 86.4in 2p.8/n (Zé"—cx)/
then . N o _ ]
. g _

' dg = 0’o06T.corge. 5y (2C—ar) /
‘e Then, in order to obtain the value of A¢ for an elastically

deforming Esrth, it is enough to multiply the expression by some
coefficients d depending on the mechanical properties of the

Earth, which we can roughly calculate. It seems that d is slightly

greater than 1, and we will take it as 1.1. Then, from (3.12),
we find the following expresslon for the tidal change in latitude
(the Op term in the note about the tide):

: ¢ ¢
Carbo forte
Mrzusawa 39° 8’ o oois.Sip (C€—-al
Wereh
| k/a:/):'nylmy 38° 457 : 0 0016 §iy (2¢€-w)
< Py llove 39° 4L¢” - -Ofoos&{ﬁ;(?f-a}\

495

(3.11)
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These values of 4¢ must be subfracted from the expressions
of the lunar diurnal term in latitude change, which we found
earlier from the analysis of the resulis.

9.3.7. Final Expression of the Lunar Diurnal Term in

For the most probable values of the coefficlents My, Ny, Mo,

No in (3.9), we have the results which we obtained from the

I.L.S. observatories and also those of Morgan and Orlov. These

results are given in Table 29. Column 4 has the valueés of M;

found by observatlon, but the values of column 5 are corrected

for the influence of tidal change of the vertical. The computa-

tion was carried out in two ways. /231
In the first, the weights of the individual values were

taken proportional to the number of observaticns of the corres-

- ponding sequences; they are denoted by P. '

In the second, the weights were taken inversely propor-
tional to the constant errors {(mean squares of most probable
values). Since the errors im the values of Mj and Nl are ailways
taken equal for these, we give a simple (separate) weight pj.
Similarly for My and No, we give a welght pp. The first method
yields : . . ,

Me = 07o086r 07004y - Ny = -0]0019 £ 00006 ?

f; = 07002/ + 000OT Nz = oooos * 0 voro /
The errors were determined from the deviations in separate values

of the coefficients, from the "center-weight mean values" given
above.

The second method gives

" Mp= 00091+ 0, 0006 N = 00023 +0]0005
flz = O’pozs 2t 00006 Mz = OJovox ¥o,0004 !

Here the mean error was computed from the independent errors of
measurement unequal with respect to accuracy (least squares method).
Corresponding to the two computational methods, we find the
following expressions for the &.lunar diurnal term:
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. - |

‘ . .
" ' —or—12°) + 0002/ 411 /2'{—0”3 /
“o088.5in (2C-or—1 ] +0,

dp=o
| z/9

' #13 13 7

:‘“df' . 070064 .gin (2¢~ci~ IS°) ¥ 0] 0027 I (2@ pox+ 15°)

+
7§ 4 16 23

After the re-establishment of the right ascension o of the
observed pair by the local sidereal time 3, we finally obtailn

dg = ~0% 009. 5in /J-zaﬂzg"’#o,”oaz.m /J'fzc)/ (3.13)

_ Then the equatlons for the lunar diurnal forced motion of /232
the pole can be written

X =- o;”ooga Jrn (o= 2¢+14°)+ 0002 .4in (J'af-.?()i

'\.5/.—.- 07009 . cos (e -sz/g"hnq”oog_CM(JO,‘ZQ{//' (3.14)

where S 1s the sidereal time at Greenwich.

In theory, we obtained these equaticns of motion assuming
that the Earth is an elastic body. They also include terms with

arguments do -~ 2 &1 and J1>f'2‘z? s representing cycllic motlons

with periods 1.079 and 0.932 days. In any case, the radius of
the polar orbilt in the second motion does not reach 0".0006, so
that essentially the lunar terms in (1.38) give simply a motion
of the pole on a clrcle of radius 0".005 and a period 1.079 days.

"Equations (3.14) obtained by analyzing a great number of
observations show that in reallty the forced wobble of the pole
that we considered takes place iIn a different manner. First,
the motion with perlod 1.079 sldereal days takes place on a
circle, but the radius has two times the theoretical value,
close to 0M™.009. Second, all the observation sequences we have
considered, except Mizusawa 1916-1934, give negative values of
Ny. This suggests the fact that the initial phase of the
motion 1s not zero, as 1s assumed 1n theory.

197



Q6T

TABLE 29.
; -
Dhservatory ‘ obffifieiin; i:::f;;:;l 14 HYy Ve } Ha { £ p !'p, L
L  Shoutonts, . SOPS R et o
(arfoforie . . . .. . 1900 — 4915 36 -|-o"0f05 40”0088 l—a,’oojf.a i+o ‘o011 :+0 003/ +o”0025 + 0000 | 4 8 110
» \dome—qo3u | 31 |4, O3+ ,0088\— 002/ | 0016 W 0032 i— 000/ 005 | 34 |5
Mizisawa . .. . Voo _srs | o 0057 |+ 0pe2 |~ 00 | 0022 |~ 0022 {— 0009 Cooi2i22
” 1906 —193¢ | 23 i+ 000+ 0005 [+ 0003 0028 |+ .00 i-_oow | ‘.OOZGJ; 2 E 112
Ukiat . L1900 — 1915 1 128 4 0104+ 0089~ ,oaér 0023 ‘+ 0034 j-— 0010 I oo % 3 i 23
> Lgu,’ 4930 | 37 |+ 00|+ 00 |~ 005 | 007 4 0030 - DO | 00K » ’ 31 4.
Washinaton . . .. . | 4931 — 1954 28 |4 L0067 |4+ 0051 — 0020 — —— — 3 l 2| —
Publove. . . . 1915 — 1928 | 28 |+ 0127 |4 0162 1 — 0007 0016 |4 0015 |4 pog2 | po22 i 3| 4 | 2
R . .
;o




Finally, the observations show a second cyclic polar motion
of period 0.932 sidereal days, which is impossible if the orbit
of the pole 1n this motion has the theoretlcal value o".0006.

9.4, Values of Constants

The theoretical values are obtalned as follows. If o 1Is
the mean distance of the Moon, the gravitational attraction of
the Moon on the Earth causes a monthly motion of the Earth
with radius K(a/l + K). This:affects the direction of a neigh-
boring planet, especially of Venus, close to the opposition, as
it is seen from the Earth. The proporticnality of the distances
of the planets is (considered) known, and the result is a
monthly displacement of thé Sun, known as "lunar inequality."
So if the distance of the Sun is known, the absolute value of
the monthly displacement of the Earth is known, and thus K is
known because a is known. Thus we find the mass of the Moon.

The parallax of the Sun has been optically determined many
times. The most recent and perhaps most accurate definition
was given by Spencer Jones. If we can measure the perturbations
of other planets due to the Earth and the Moon together, this
will give the ratio (E+M)/S.

i But we also have f%STff

o
Sun and f %5¥ = n? separately for small known correctlons. These

E% = n'2 where a' = distance of the

equations determine the «/a’ and thus the distance of the Sun.
Unfortunately, the best determination of these sequences,
according to E. Rabe, seems to be Inconsistent with the one
by Spencer Jones, and it has a very small uncertainty.

Systematic errors have not been discovered in any determina-
tion, b u t analysis supports the one by Rabe.

The ratio of the predessioﬁ is of the form
4 (&¥¢é;éi ;]
< f-’-K) (1)

where a, b are known quantities. Hence, if K is known, we can
find the (C-A)/C, the dynamic ellipticity, already called
precessional constant. The maln nutation for a rigid body has
obliguity amplitude '

__}2 ’f_-i ,
A_/:.;I'__‘_‘ffk _“—_—,C ‘ \ | (2)
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Until 1901, (1) and (2) were made use of as the palr of
equations defining n and (C-A)/C. Hink determined the lunar
inequality from observation of Venus in "opposition," and he
found an apparently much more accurate determination of K.

Thus the use of the observed nutational constant for this pur-
pose was considered invalid (was substituted). Nevertheless,
the values observed were systematically smaller than those
derived from the lunar inequality and the ratlo of the nutation.
Jackson first insisted that the difference was genuine.

For a rigid body, the coefficient would be N = g".,2272
or 9".2242, according to the solar precession adopted by Spencer
Jones and Rabe. The effect of elasticity on the main nutation
1s the reascn why 1t seems smaller. The dvnamics of a rigid
shell fllled with & fluid were studied by Kelvin, Hough,
Greenhill, and Poincaré. Poincaré gave two différent methods.
Cne was reproduced 1n hydrodynamics by Lamp, but the other 1s
better, because of the generalization to an elastic shell and
a nonuniform nucleus. Bonti and Lyttleton directed the
attention of Harald Jeffreys to the paper by Lamb, so that
he found, using Bullen's value for the moment of inertia of the
nucleus, that a fluid nucleus could reduce the amplitude by 1/150.

The correction for the elasticity of the shell reduced
the result, but only when Takenchi gave a complete sclution for
an elastic shell with properties found from seismological
information, this showed that the solution for the Earth itself /236
1s possible. The most appropriate method was to refer the Earth
tc a system rotating with the new angular veloclty, introducing
appropriate functions with additional displacements and to use
the coefficients as Lagrange coordinates.

For a rigid Earth, the relation (ratlo) of the amplitude
of & and ¢ (obliguity, length) is constant. In all the analyses
of observations before Fedorov, the two components were assumed
to be the ratio for a rigid body. But the theoretical ratio is
slightly affected by the correction due to elasticity, and
affected much more hy the correction due to the fluidity of the
Earth's core. This arises as follows.

For any constituent material of the Earth, the precession
remains the same. So 1f ¢, the wobble veloclity referred to
.the axes of inertia, is zero, the constituent material dcoes not
change the forced motion, and for small variations of o, the
changes will be proportlonal to o. Now, a nutation takes place
on an ellipse, and it can be considered as the result of two
cyclic motions with equal and opposite velocities. If one of them
has 1ts amplitude decreasing by some changes in the assumed
constituent materials of the Earth, the other will respectively
increase, and the.result will be a change in the relation of

the axes of the ellipse. Hence, we especially consider impossible
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the decrease in the theoretical amplitude of the main nutation
in the obliquity without a decrease in the longitude, of a
greater portion.

In other times, it was considered that nutation can have 237
measured phase differences, taking account of the possible
imperfections of the elasticity of the Earth. Nevertheless,
any kind of palr arising this way appear only from the gravi-
tational attraction of the Moon on the rigid tide, which is
on the order of 10-5 of the ascending differences correspondling
to the ellipticity of the figure. 8o similarly, if the "rigid
tide" had a lag of 90°, the lag in nutations could be only on
the order of 10-3 in ecyclic measurement. Furthermore, if the
lag of the tide 1s extended even by 1°, thils would lead to
other conclusions which are not verified. Hence thls seems
impossible, 1.e. that the lag can really be greater than a.few
seconds of arc in each phase, and it is very unfortunate that
it 1s more than a few. :

9.5. Conclusions Regarding Comparison of Theory and Observation

If we compare the results of theory and observation, we find
that as far as forced polar motion is concerned, the motion has
a period =21.(1.079) sidereal day, but the radius of the circle
has twice the thecretlcal value. On the other hand, from
observations a second cyclic motion results with period 0.932
sidereal day, which would be impossible i1f the orbit of the pole
had the theoretical value of the radius - 0".0006. As far as
the values of the constants are concerned, their results differ
from the theoretical ones, and the value of N has not yet been
exactly determined.

Therefore we must advance our hypotheses. Thus,)we con-
sider the relations between the crust and the core of the Earth.

This consideration constitutes the state of the art, as far /238
as we know, on this subject. It must be noted that we do not
know positively even 1f the core is fluid or solid. But we have
definltely computed quantities such as density, mass of the core,
ete., with satisfactory accuracy.

A preview of this theory was given before; in the following,
we will develop 1t in more detall. But-in order to complete
the comparison between theory and cobservation, we must say
that the conclusions reached up to the present regarding this
theory are not enough. Still, a complete theory about the
interior of the Earth has not been developed. Some assumptions
have simply been put forward on the basis of the results. It isutoo
carly: to predict’ whether, even after completion of the theory,
some disagreements would exist. In this case, we should search
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for something more. (At this point, the idea of plasticlty 1is
suggested. I.e., if Hook's 1law of linear dependence is not
valid, we will have a remaining permanent deformation. There-
fore, the inertia tensor, as has already been developed, will
be of the form I = I} + I, + I} + I, where I} relates to the
deformed Earth. ThlS is a subJect %or future research. )
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10. SOME RESULTS CONCERNING THE INTERACTION BETWEEN THE CORE
AND THE CRUST OF THE EARTH

10.1., Historical Introduction

The results of the previous chapters show that indeed there
exlst some disagreements between the results of the theory of
rotation of an ideally elastic Earth and the data of the astro-
nomical observations. The reason for these dlsagreements must
be sought in the assumptdons incorporated in the theory, and
the Earth may, after all, not be considered elastic. The
next step 1is, naturally, to investigate some assumptions about /239
the mechanical properties of the Earth. In order to declde
which assumptions we wlll investigate, we must first consider
all the combinations of information that we have for the interior
layer of the Earth which can presently be considered trustworthy.

The fact that transverse seismic waves either do not pass
through the core. of the Earth or, if they pass through, are
very attenuated, was interpreted by many geophysicists as a
proof that the core 1s 1n a fluid state. This, of course, gives
rise to the effect of the fluldity of the core on the rotation
of the Earth. The first person who seriously strove in this
direction was Hopkins in 1830, but his work was published in
1839, 1840 and 1842 and is now of historical value only. Later,
W. Thomson considered the problem, and he proved that the result
would considerably increase the 1/2-year and chiefly the l4-day
nutation. His result was published without proof, and i1t was
verified by subseguent researchers.

The problem of a rotating Earth constituting a rigid
shell and a fluld nucleus was first considered with the necessary
rigor and completeness by Sloudsky, who made use of the previous
work of Joukofsky. At the same time.as Sloudsky, Hough considered
the same problem, but 1nvestigated only free wobble.

In 1910, Pcincaré published his research on the precession
of a deforming Earth. Considering the case of a rigid shell
and a fluid nueleus, he arrived at eguatilons which differed
only in form from those of Sloudsky.

N
n2
o

From 1910 to 1948, as far as we know, nothing was published
on the effect of the fluld nucleus on the rotational moticn of
the Earth. In the interim, the development of seismology gave
basic information about the interior constituents of the Earth.
Our conception of the nature of the core changed in an essential
way. The hypothesis of a fluid core was initially suggested in
order to explain ¥olcanic explosions and the geothermal scale.
During the last 100 years, supporters of this hypothesis
considered the Earth a fluid mass with a fine crust whose thick-~
ness was on the order of 10 km. Now we accept a so0lid crust of
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about 2900 km thickness with a fluld core in it. We have
reliable information about the size, the mass, the density, and
the compressibility of the core. This made it possible for
Jeffreys to give, in two recent works, not only a qualitative,
but also a quantitative calculation of the dynamic result of
the nucleus. He had in mind the explanation of the known dis-
agreement between the theoretical and observed values of the
nutational constant (N). In his first work, he used the
equation of Lamp and the values of the moments of inertia of
the nucleus and the shell, found by Bullen, and he ignored the
elastic deformation of the shell. With these assumpticns, he
found that the constant of nutation is smaller than the value
it would have for a rigid body. While later, from the work

of Spencer Jones, 1t was found to be equal to 9".227, for the
theory of an Earth with fluid core, it was found to be equal
to 9M.172.

In the second work, Jeffreys took account of the effect
of the elasticéity of the shell and obtained the theoretical
value 9",181. Moreover, he found that the coefficients of the /241
main nutation in obliquity and longitude are affected to a
different degree by the nucleus, so that the ratio of the axes
of’ the ellipse of nutatlion needs a correction An where An =
= -0".003. However, the results of the analysis do not assure
the later conelusions, even though the correction an found by
Jeffreys is great enough to be found in the analysisg of the
observations.

This last work of Jeffreys is apparently the only one
which attempts to take into account beth the motion of the
nucleus and the elastic deformation of the Earth. In this
last work, Vicente and Jeffreys considered two models for the
nucleus, both arranged in such a way as: to have the correct
mass and moment of inertia and ellipticity given from Bullard's
theory about the shape of the Earth.

In the one model, the nucleus is considered homogenecous
and incompressible with a separate body in the center. In
the other, the nucleus 1s considered as having a square law for
the density, and there is a total change due to pressure. In
reality, the known compression would be taken into account for
about half the reductlon from uniformlity of the density. Refer-
ring again to the chapter on calculating the maln nutational
terms, we observe that the results finally obtalned agree more
with the first model. This is surprising, because the pressure
in the nucleus is considered to be gregt. An intermediate
density law which would be more plausible from the geophysical
point of view would fit with enough conditions. In the works
of Joukowsky and Sloudsky, efforts were made to take into account
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the viscoslty of the nucleus. This problem has recently been /242
considered by Sekiguchi and by Bondi and Lyttleton. The
authors of later works used the methods of ' the matrix theory
of motion of a viscous fluld, but some, like Sekiguchil, con-
Sidered only the case of a spherlcal nucleus. Note that the
case of a viscous fluild is related to the deformation of solld
bodies and the moment of fluids. From this brief summary, it
1s apparent that the study of the effect of the nucleus of the
Earth on rotational motion comes down to the solution of par-
ticular problems. We do not as yet have a general theory
developed to the point where a rigorous test can be made for
comparison wilth the observations. In any case, for the future
development of such a theory,it is useful to know that small
parts of the particular cases observed have been explained.

10.2. Determination of the Moments of Forces Applied on the
" Crust from the Core

The results allow us to obtain some conclusions about the
forces applied on the crust from the core. Without knowing the
nature of these forces, we will attempt to define their moments.

The equation of the rotational motion of the crust can
be written as

+ M (10.2.1)

where @g is the angular momentum, Ls is the torque of the forces

due to the Sun and Moon, M the torque of the forces due to the

core. We denote by G the total angular momentum of the Earth.

The derivative of G with respect to time is, as we have already

seen, a vector on the plane of the equator - - /. Thus /243
we can represent:it by a complex quantity: { < % @ "CV/

~ G o= G (sindp+rd) ;! (10.1.2)

We have already met this formula in the development of the
modern theory, but there G was put in the formula of the cross-
product v and in front of the first term of the right-

hand side, a (~) sign existed. This can be explained by the
fact that we used a right-handed system of axes in this chapter.
Now we use the more common method, 1.e. we take a right-handed
positive measurement 80 wWe change the sign of . We write the
following theoretlcal expressilons for the sum of the principal
and the li-day term in longitude and obliquity:
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For obvious reasons, we use the value of the nutational
constant based on the known relation between thls constant, the
ellipticity H, and the proportionality of the mass of the Moon
to the mass of the Earth.

. ¥ A :
Ban® AN~ / /, EH ——
> Vs 9; ?8nf Py // (10.2.4)

We take N = 9",220, and with this value we compute the other
coefficlents in (10.2.9). We obtained them 1n a greater number
of figures than the filrst, because the observations give the
expression for the ll-day term more accurately.

If no interaction existed between the core and the crust,
so that torque M in (10.1) could be taken as zero, we would have

—~> Gg = 4 Gs (sindy + 7V )/* (10.2.5)
where h 1is the ratio of the dynamic ellipticity of the crust to . /244
that of the Earth as a whole. Then (10.5) can substitute for Lg
in (10.1).

Because the cbserver 1s always on the crust, the equation
of nutation was obtained from astronomical observations and 1t
describes the vector Gg exactly. Here we will consider only the
term of period 18 1/2 years and 14 days of this motion. The
expression for the maln nutational term can be obtained from the
coefflcients and corrections found previously, or we can f£and %
from the chapter on determination of the main nutational Iterms,
that it 1is

Sty D ¥, = ~ 87850 55 & 7'-0,"008 wr By Fy [/

., (10.6)
Gv = 9198 cas & 8’00 Uiy JBf-Fg/

where Fy, Fg are the sums of all the remalning terms entering

the formulas. Then, in order to find the ll-day term, we make use
of the results from the chapter on forced polar motlon for the
lunar diurnal term (first method of solution). We Will have the
following eqguation:
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;
d = 070086 sin (2d-a) - 00019 cos (2¢-a]+ O/oo2s sin (2eral]

(10.7)

From this we obtain the ftheoretical expresslon for the
Junar diurnal term which we found in the modern thecory for am
elastic Earth, 1.e.,

00081 sin (2C~a)
The remainder 1s:

070035 sin (27-a) -0 009 of [2¢-q)+0 0021 4in (2 Cra)] (14 8)

We can now consider the difference between the two expres-
sions for the lli-day nutation.of the crust. This 1is adapted
for reduction to the apparent position, and the result i1s obtained /245
accordling to astronomical observations. This was found by the
following considerations. The equation of motion from the angular
momentum of the Earth in space remains the same for any hypothesis
concerning the mechanical properties of the Earth, but this is
not necessarlily true for the angular momentum of the shell alone.
Inversely, since the shell 1s an elastle body, we can take itathat
vector @5 behaves with respect to the shell according to the
theory of rotation of an elastic body, 1.e. according to the
equations X ..., ¥ ... of the modern theory (projections of G
on 0XoY¥pZp). Now, when we consider the motion of the shell, we
do not need to change the theoretical egquations for the forced
latitude change and the difference hetween the theoretical and
observaticnal results can be attributed to the lnaccuracy of the
theoretical expression for the 1li-day nutation of the shell,
which we write as follows, takling the values of the coefficients
given by Woolard:

dd= -0"0811 Sin 2 C cos x + 00884 cos 2 Csin a{.f: (10.9)
!

Taking (10.8), we have from (10.9):

e oy
[ 0. 0866 §in 2@;&0"00@ cos ZC€) * /o O8GQ& c¢oy 2& +0,00/% .;m 2«)(10 10)

By combining this result with (10.6), and by excluding all
the remaining nutational terms (since they were excluded in the
followling transformations), we find:
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Sin Dy =~ 6, “B50 sin S8 + 0”008 cos b - 070866 in 2 ¢ #0009 cos Zq
|
\ 9r = 9198 cos R -.o, 00/ dinm J& + 0% 08 %4 0§ 2 € +0 0019 Sin 2&

(10.11)

It is worth notlng at this point that Fedorov, whose
analysis results we take account of in the formulas, found an
error in the above expression. However, omitting a slight cor-
rection, we will continue as 1f 1t were correct.

We can already determine the G by substituting Egs. (10.11)
in the previously given expression

Gs = Gs (sind s i 9v)

Because the vector M lies on the plane of the equator, it can
be written as X + iY¥, and using (10.1), we have

X44Y = Gy /d'/}::y/y,;_-hsi.)+ ,‘/J.g,j/]" (10.12)

It is interesting to compare the above expression to what
we will obtaln for integrated connections between the nucleus
and the shell, where we conslder a solld nucleus. The torques
of the forces exerted in this case by the nucleus are denoted

by X* + iY¥'., 1In this case, GS and G are practically colinear.
Then, by substitution in (10.2), we must obtain the theoretical
expression for nutation (10.3). Then we obtain:

X'2iV < G (imn ) (sin 95+ i5) " (10.13)

Then, in order to calculate h, we use the followlng in the
moments of inertia of the nucleus An and Cp, obtalned by Bullen

. |
¢ = Lu-An_ g o02¢ PRl o,uz/' (10.14)
T An 4
and we find h = 1.027. Substituting (10.3) into (10.13) and
ipiting L= qt , @3¢ where n is the known velocity of the
rotation of the Earth, we find:
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XV = abs (00127 €L olozz o7 v g Gs/q’baz:e"ffo;’owe“’gf

(10.15)

The moment of the force caused by the main nutation can be
written as the sum of the two vectors

. Uz=-07032a G e""”’f
Since a 1s negative, the first vector rotates on the plane
in the right-hand direction, and the other in the left-hand
direction. Relative to the Earth, the two vectors rotate with /247
angular velocities -n + a, -n -a. The torqe caused by the 1l4-day
term can also be expressed as the sum of the vectors

?jj = fo??d Gs 6".'”

Ve = Q0023 AGs e“"f"’ Ve = ~0ooor 36, e~ B8/

\ .
In the following, substituting (4.3) and (4.11) 1n (10.12),
we have:

Ix+/Y = xGs (0236 % 0/ asse®t + ofoog et ~ G g0y ¢ e ~/77) ~

\

+ 3G (00010 ¢ B - 0] 002y 0 i8F £ o7 00s9 €T9F] - (10 10)

= (7097 6027 ) U # (10940130 | Uy + (~043+Q83: ) Vs v24 va

We do not think that it i1s possible, based on these results,
to give a quantitative measure of the effects of the fluidity of
thernucleus on the interaction between nucleus and shell. How-
ever, some quantitative conclusions can be drawn. Among them,
the following seem to be the more reliable:

1. The norm of the vector U; increases.
2. The vector vy reverses its direction.

3. Vectors uy and u, diverge in the direction opposite that
of rotatlion of these vectors relative to the Earth.

©10.3.  Comparison with the Theory of Sloudsky and Poincare

Results 1 and 2 given in the previous chapter seem at first
sight to contradict each other. In any case, this contradiction
can be easily explained if we similarly use the simpler formula of
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the theory of the rotation of the Earth with a fluld nucleus as
developed by Sloudsky and Poincaré. This 1s a reference to
the hydrodynamic study of Lamp.

We will use the equations given by Lamp for the calculation
of the torqgue.

AW + Fady =7 (C-4 ) wd +i Faudd, ~ :@e"ff/

i

F“j“" ‘4’!‘5:; +J Chbfﬁ.’ = U (10.17)

where - . - )
QJ=P;4“? , Q&u/g,’.{!?y . (10.18)

where p, q are the components of the angular velcclty of the
rotation of the Earth around a perpendicular equatorial axis
rigidly attached to the shell. pp and g, are the components of
the angular veloclty of the nucleus relatlve to the shell. Note
that here by the term "rotation" we mean "elliptic rotation®

(as Joukowsky used the term). F is the magnitude (quantity) of
the dimensions of one moment of inertia, and in this case it
equals Apv1l-e2.

We put

(10.19)

and then (10.17) transforms into

A Z‘J‘L—l‘ ‘(C_;-4J')l1£:| = [/'-/‘yjﬁe{ﬂ‘*r*.ir. ,
i
| \

where Cg and Ag are the principal moments of Inertia of the shell.

Hence we find
.- , - ) j
~ X+(Y = /U/?e“i AG = Fay +i(Cu-4y)uld - [Fy S, (10.19)
If there is no relative motion of the nucleus -+ wy = 0, and
X'-.‘-J'Y'=,V4@€“‘f— 4'1631“”(614“'4‘1)“&’-/ (10.20)

The solution of (10.17) is
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. I ‘ - _ F{, - 16;! ! |
@:f‘: _ fi’-ﬁ\f:?(‘d\h d'lf el : Wy d_(")""ﬁc } (10-21)
N ‘d{;l/y/ -

where

\

|
\

1 Ae - (C"Aj‘q Flesy)
fe ‘df-tc}Cq'-o

Ae) =

Substituting the values of w and wp in (10.20) and partially
rearranging, we have .

Z i
X oo X oo s (6t5) . Ll
- 7 =77 .8 S / - (10.21)

F= g 4ls) - (A ¢ Gun) LAne - (ao-a) ]/

Using (10.14), we can express the moments of inertia of the
nucleus 1n terms of the greater moment of inertla of the Earth,
as follows:

Ay =5 (1-4) ¢ = o, 716 ¢ C‘r;—_:;?({ﬂ#)/r,:é)c.:qu?f/@_“ﬁ

. 2 '
Flmt (1K) (16 P Qorzact, o lim e - gosme [/

//

Substituting the above arithmetic values in (10.21) (the
first), we obtalin for the main and the li-day nutational term
the following results:

Quantity Main Nutation (Vector uy) 14-Day ?gp?tional
V1
. ' Cd
& - /—/-o,boo/z;s)q /-f+0,o;3):; /'I
A(c) ~0, 000282 C? Go0¢ys »ice f}
S 0 ovoos 4 C? 0,006026 »n*C? j
Sn -~ f400 -Gy
té 5 (6th) ' /20 - 2,2 f
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We therefore cbserve that the result of the fluldity of the
nucleus 1is an increase in vector ujy and an inversion of_direction
of vy. It i1s natural to assume that the divergence of uj and Us
in t%e direction of the diurnal rotation of the Earth can be

explained by friction at the boundary of the nucleus.

Consldering a summary of the above, we note that the final
assumption we make is a solid erust of 2900 km thickness and a
fluid core. The most complete work in this direction was
done by Jeffrey in two successive papers. In the second, he
considers the motion of the nucleus as well as the elastic
deformation of the shell. That is, the theory of a totally
elastic Earth is not wvalid any longer. However, no complete
theory of a fluid nucleus was developed, but we had only a few
points of disagreement. In the following .development, an attempt
is made to determine the moments of the forces which act on the
shell from the nucleus. The investigation is based on the relation /25(

Gs = Ly + M where Gg is the angular momentum, L, 1s the moment
of the forces due to the Sun and Moon, and M i1s the moment of the
forces due to the nucleus.

We propose the following:

If no Interaction existed between shell and nucleus, then
it would be

= e - "
G5 = 2G5 +i0)]  umere. G= G liimIgrind)

and h = ratico of the dynamic ellipticity of the shell to that
of the entire Earth, i.e. we define a correspondlng expression
of G.

But in this case, it will also be

H=0 —~» Ls= 4 G (s 96419 )

Note that the observer stands on the shell. Thus the observa-

tions essentially describe Gg and not G, as was considered
up to now.

We_already know Lg. If we determine Gg also, we can cal-
culate M. But, based on the above remark, Gg can be taken from
the observations. From the chapter on the prinecipal nutational
terms, we obtain corresponding expressions for the principal
and the 1l4-day term. Note that as was stated-in the modern

212



theory, Eé behaves (i.e. it is determinéd) toward the shell,
according to the theory of a perfectly elastic body. Consider
M as X + iY (it lies on the plane of the Equator)

T~ X2/ ¥V = Gy s = o ' : \
V= G- Ly = G L80nd (Y~ 4p ) #
+ ((8-49)] |
Similarly we find the expression for a solid nucleus ~ /251

X' + 1Y' which up to now has not glven the expected results,
at least 1n 1ts present form.

If we compare it with Poincaré's theory (that 1s without
final substitution from observations), 1t again results in an
increase of the principal nutation and inversion of the vector
of the 1l-day nutation. The existing differences can nct be
attributed to the friction of the nucleus on the shell.

We can not, of course, expect guantitative agreement
between the theoretical results and those obtained from cobserva-
tions, because the model of the Earth that we used in the theory
is a rough simplification. The.elasticity: of the shell and
the viscosity of the nucleus were not considered 1n this model
(these were later considered by Jeffreys). At the same time,
the effect of the nucleus on the shell's motion is probably: not
defined by the friction on the shell. Also, other kinds of
forces, e.g. of a maghetic nature, can play an important role.
Note that this is the state of the art on this subject. We
see therefore that each theory is simply a better approximation
toward the convergence of theory and observation, and also
that much work is still required, if not an inspilred idea.
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11. STUDY OF THE POLAR MQTIONS

11.1.  Motions

From the study of the observations according to the methods
of elaboratlion presented in the previous chapters, it was
derived that the pole of the Earth does not have a fixed
position, but it describes a complicated curve continuously
moving on the surface of our planet. This curve is called /252
polar orbit. By an approprilate method, we can analyze this
motion, breaking it intc other, simpler ones, and therefore
consider 1t as the vector sum of the following separate motions.

1. We have two motions of the pole of a periodic nature.
The first has a period of 1 year and is thus called annual motion.
Due to this motlon, the pole of the Earth describes on the
surface of the Earth an orbit of more or less elliptic shape,
the radius of which changes from year to year between the
values 0".06 and 0".10.

2. The second periodic motion has no constant pericd but
exhibits changes as time passes ranging from 412 to 442 days,
1.e. it has a period on the order of 14 months. This motion is
known as Chandler motion. Because of this, the pole of the
Earth describes an orbit of circular shape the radius of which
changes with time, taking values between 0".07 and 0".25.

3. Besides the above periodic changes of the instantaneocus
pole, we have an eternal change of the position of the pale
because of which the average position of the pole is displaced
on the surface of the Earth by approximately 0M.003 per year.
in the direction of the meridian corresponding tc the value of
longitude A = 60° W. This result needs further verification.

4, PFinally, we have also other changes dn the position
of the instantaneous pole which probably correspond to perilodic
motions of small amplitude, or they are totally irregular.

5. The above were found based on the hypothesis that the
Earth is not subject to the action of external forces. But in
fact, the Earth is subject to the action of the forces of the
bodies of our planetary system and especially of the Sun and Moon.

Therefore, due to the action of gravitational forces of /253
these two bodies on the Earth as a whole, we have another
motion of the instantaneous pole of the Earth which is super-
1mposed on the previoudly studied ones. Because of this motion,

Within a day an almost-circular orbit, the radius of which
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changes between the values 0".00 and 0".02. For an observer
standing over the North Pole of the Earth, the lunar-solar
motion of the ilnstantaneous North Pole of the Earth seems to
take place in the retrograde direction, whille the annual polar
motion and the Chandler motion, and also the final sum of
motions seem to take place in the right direction, i.e. in the
same dlrection as the rotation of the Earth. (The matter of
the diurnal lunar-solar motion has already been studiled.) We
will attempt a brief qualitative and quantitative interpretation
of the above motions. We must Immediately say that the quanti-
tative interpretation is not yet complete. As far as the
qualitative one, in general, it is at least satlsfactory.

Therefore, the annual motion is most probably caused by
the displacements of masses at each epoch in the Interior,
the oceans and the atmosphere jof Earth. I.e., the annual motion
s a forced motion due to the change in physical elements. On
the contrary, the polar motion with the Chandler perlod is not
forced, but free, corresponding to the condition predicted by
Euler, with the difference that its period is greater than
the predicted one, i.e. instead of 304 days 1t is on the ordér
of 14 months. This difference in the value of the period comes
from the different consideration of the Earth,!1.e. Euler
considered the Earth as a perfectly rigid body while the Earth
1s subject to elastic and plastic deformations. Indeed, it
can be proved that 1f the Earth is a deformable body and it /254
rotates initlally around an axis not coinciding with its principal
axis of inertia, then 1t deforms with the resultant increase in
the value of the period calculated by Euler.

As far as the eternal motion 1s concerned, we do not have
a clear answer. The problem appears to be extremely difficult,
because first of all we must eliminate all the systematic errors
which enter in the determination of the position of the instan-
taneous pole. Another problem which also appears is the dis-
tinction between genuine polar motion and the effect of the
change 1n relative positions of the international observatories,
due to the phenomenon of displacement of the continents. In
any case, for the time being the only thing we can say with
assurance 1s that the total displacement of the average pole
does not exceed 1", Note that an eternal change of the average
pole on the order of 0".003 per year can be easily interpreted
as the result of the class of poles which is observed in the
area of Greenland.

Finally, the irregular changes in position of the instan-
taneous pole are possibly caused by irregular displacements of
masses 1n the Interilor or on the surface of the Farth as, for
example, displacement due to earthquake, volcanic explosions,
or due to singular meteorological phenoemna.
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Summarizing the hbove, we have:

1. Free periodic motion of Chandler
2. Annual perlodic motion{(forced)
3 Lunar-solar diurnal motion

4., Eternal motion
5

Small period motions
Totally irregular motions

Among the above motions, £ r e e perlodic motion was inves- /255
tigated fully. Also the annual periodic motion and lunar-solar
diurnal motion were statistically developed from observations.
In the following, we will investigate eternal motion.

11.2. Eternal Polar Motilon

We already mentloned that the Earth's pole has an eternal
motion. This phenomenon must be differentiated from that of
the displacment of continents. The hypothesis that the conti-
nents are moving arose from the research of geophysicists during
the past years. Enough theories appeared, like the one by
Wegener, which assumed that the Eastern and Western hemlspheres
move independently of each other.

Rellable information about continental displacement is
obtained from paleomagnetic observations of rocks, where we
examine the direction of the magnetic field of the Earth during
the period when the rock was red-hot. Modern geophysical theories
seek to explain exactly these paleomagnetic theories. Thus
it is shown that two things might have happened in the past:

1. Displacement of the pole on a great scale; 2. continental
displacement.

Research was done by some investlgators to prove that
continental dlsplacement was derived from changes observed in
latitude and longlitude, and that 1t is not the same phenomenon.
In any case, these changes are possibly caused by observation
errors, lack of homogeneity, and by changes which occurred in
the total observation. In our time, 1t is generally accepted
that a continental displacement exists, but it has very small
value, so that it requires careful calculation of the sytematic
gerrors, mainly those caused by the proper motions of the stars.
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Measurements of continental displacement give a mean value /256
for a long time interval. Also, a paleomagnetic check gives
about the same value of the displacement velocity. This is
on the order of 0.5-0.3 e¢m/year. But this implies a displace-
ment of 1 meter in about 33 years, with the exception of
certain areas in Indla, which are displaced faster. The probable
error of observation in the I.L.S, stations for a year is on
the order of Q".022. Therefore, from the observations made by
these stations for 1 year, we can not discover this phenomenon.
For thils purpose, observations over a long : sequence of years,
on the order of 50 years, are requlired in order to have sig-
nificant results.

Since we . are concerned with continental displacement, it
is obvious that we will obtain better results from observations
of longitude. DBecause of thls idea, systematic observations
were made using the astrolabe and the PIT of longitude. The
generdl conclusion of the above work is that the change in
longitude is not caused only by continental displacement. After
that, the phenomenon of eternal polar motlon will be considered
separately from continental displacement. For the study of this
phenomenon, analysis of the observations of the I.L.S. stations
for the last 66 years was done. The analysis showed that the
mean pole has an eternal motlon which is composed of a "pro-
gressive" component on the order of ,0".0035/year (10 m along
the 65° W meridian) and of an "equllibrated" component
(oscillating) with a period of 24 years along the 122° W meridian.
Note that especially the observations for the eternal peolar
motion were made by observing the same stars from a chain of
statlons, which eliminates the errors due to the positions of
the stars.

0f -the two components above, the one of 24-hour period /257
is rather surprising, because as far as we know there is no geo-
physical phenomencon of such period. Finally, Anna Stukc observed
an increase of latitude of Ukiah by 0".003 and a decrease of
latitude of Mizusawa by 0".003 (as much as the "progressive"
component), and she considered this as an assertion of the
geophysical theory about the left-handed rotation of the shore
of the Pacific Ocean.
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12. LOVE NUMBERS

12.1. Introduction

In the chapter about deformations we stated that investl-
gating problems concerned with oscillations of a year or smaller
period, for a plastic Earth, the use of Love's numbers is
suggested; these are dimensionless numbers, essentially coef-
ficients, describing different physical phenomena. With the
exceptilon of the free periodic motion of Chandler, all the
others have periods on the order of 1 year or less. Therefore,
it is considered suitable to develop a method of investigation
by Love's numbers. To this end, we transform appropriately
the Euler equations into a form given by Liouville. Then we
develop the theory of Love = numbers after making reference
for a time to the reference filgures. By the Love numbers, we
transform the initial equations of Liouvilile., Finally, we
obtain the form of Liouville's equation for each case, as, for
example, for forced oscillation, free oscillation, etc.

Closing the development of thils methed, we investlgate
the equation of excitation which moves the pole to different
positions around an assumed initial position, and we give a
geometric presentation of them. Thus it énly remains to
apply this method to the eternal motion as well as to motions
of small perlods. Note that the method of investigation wilth
Love . numbers is, so to speak, empirical and more accurate than
the others, because the Love numbers exactly represent the
real situation of the Earth. The great advantage of this method
18 that our equations can be adjusted to any future improvement
of our knowledge about the elastic behavior of the Earth.

12.2. Liouville Equations

In the chapter on the classical Euler theory, the formula
in which the change of angular momentum due to externally
applied torque is described is given as:

£=dGE+§A§f

I - £ !
From this equation, by df transformations we have the Euler
equations
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If these equations are written in one form, we have bthe
formula

Z-[:-Q_KE.Z‘_,-{-{J‘JK wJGg-
[ ar o (11.1)

where, according to the usual summation convention, each index
different from 1 takes all possible values, and we add the results:
if 1 #J # k&, then (4, j, k) = (1, 2, 3).

In the above equation, G stands for the angular momentum,
Li for the externally applied torque, w for the components of
the angular velocity and eiii is the corresponding Krodneker
symbol for three indices. That is, it willl be

€43k = ¢ 1f any two indices are equal, 1 =73, J =k, k = i /259
€35k = 1 1f the indices are of the order 1, 2, 3, 1, 2 (even)
€45k -1 1f the indices are in odd order 1, 3, 2, 1, 3.

The equations of form (1l1.1) are very general, for example,
they may refer to a system of moving molecules. It is useful
for the following to separate the angular momentum into two parts:

™~ G o= Gg(ﬂw‘jvﬂg{ (+) .

where  csi o efn k. Sef ~x;x; )av

is the variahle inertia tensor for the material included in a
volume V and 6ij 1s the Kroneker delta, where

845 = 0if 1 =

]

d13 1 it 1 # 3
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gi (t) represents a relative angular momentum

%= o e I e:a.a’lf/

due to the motion uji relative to the xj system (rotating). By
substitution, we obtain the equation

Li o o - . ) L . -
S — /"{/“’,/ ’_‘fj’r/_f &k ay ‘/ceg__unyk}/ (11.2)

This equation was obtailned by Liouville in 1858, and it 1s
called the Liouville equation. All investigations dealing with
irregularities In rotation will be obtained as particular solu-
tions of the above equation. We make the following remarks:

1. Ljy represents an external torque which acts on a body
occupying volume V. The surface bounding this body can be
chosen appropriately, for example consildering wind, we could
exclude the atmosphere, choosing the surface so that in this
case an external torque would exist due to the air pressure, or /260
we could consider the planet as a whole, and then it would be
Ly = 0. The choice 1s dictated by the total number of available
instruments, e.g., 1t is easier to determine the air pressure
than the angular momentum.

On the other hand, IL; is the component of the moments of
the forces along the axis”of rotation. The change in Ly must
be examined with special attention. If, for examplel we
consider the moment due to wind moving along an axis constant
with respect to time, Lj = 0. But a torque constant in Space
has components whilch vary with time ,and .with diurnal frequency.

2. The differentiatlion which takes place has been referred
to a time O when the rotating system X3 and the fixed X3 coin-
clde. At this instant, the components Lj, g4 and Ci35 in the
two systems are the same. But for every futlUre time' t' when
xi has changed position, we chose a "fixed" system X! the axes
of which coincide with those of xt. These are applied according
to the classical theory. In particular, as far as gquantities
dci3/dt and dgi/dt are concerned, it is easier and safer firpst
to make the integration from the formulas of their definitions
and then to substitute them in the general formula and carry
out the differentiation. This 1s of great significance when
the surface S, which bounds the volume with respect to which
we differentiate, is changing, so that if the Integration takes
place before, only then can we overcome deformation of 8.
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3. Quantitles g1 and Cjj depend on the density field
p(xg,t) and the relative velocity uj (xg,t}. In our equations,
p and ui appear as Iindependent variables.

There are certain restrictions imposed by the conservation = /261
of mass, energy, and momentum. However, the equations could
be transformed so that they are not constant but are satisfied
with respect to conservation, e.g. change in the density field
p(t) for motion uj(t). In the following exposition, the
fields p and uj are defined for each geophysiecal application,
according to thelr particular laws. With Li, g1 and Cij com-
Pletely defined, the equations can be solved for angular momentum
wi(t) of the reference system ¥y relative to the fixed system Xj.

Consider a coordinate system Qy4 rotating with angular
velocity 2 = (w,wt)1/2 as the xi system but with axis y3 directed
along the instantaneous axis of rotatlon. Then

!/

1'::-.&_'/_"1 a

! > 33/

w1/9 represents the direction cosines of the rotating axes with
respect to the reference axes. (Note that i1f d/dt represents

the acceleration of diurnal rotation, then wj, wZ are the com-
ponents of the wobble.)

12.3. Reference Coordinate Systems

Some distinction is made by some authors between the rotating
axes of reference in the Euler equations and the body axes of
the Earth, the changes of which can be described by:

Ciq = 4 P (x Ye Iy - z,'z:/-)a’V y g,‘—:\é P é{/’k Xy e avi

The two rotating systems can be combined with no loss of
generality. The cholce of the x4 system is totally arbitrary,
e.g. it could rotate with an angular velocity in the opposite - /262
directlon from the direciton of the rotation of the Earth.
However, for a coordinate system to be more suitable, the
coordinate axes must be attached somehow to the Farth. In most
papers: . dealing with the coordinate systems, the rotation takes
place "simultaneously with the rotation of the Earth."

If the Earth were perfectly rigid, there would be no further
difficulties. But wind, ocean currents, and the fluid core
cause complications. For that reason, the axes can be fixed to
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the "rigid Earth." But there are still tidal deformations of
the solid crust. On the other hand, a relative motlon of the
shell of the Earth is accepted by geology. -Such a motion is
known to take place, and 1t has been accepted by Wegener as

a displacement of one continent relative to another. Thus,
finally, we requlre a set of fixed axes which are kinematically
defined so as to have no restriction on the deforming Earth.
There is a number of possible choices.

1. The Mean Axes of the Body {(of the Earth) of Tisserand

These are defined in such a.way as to have gi = 0. Thus,
if the wind, ocean currents, and all other relative motlons stop,
these axes will rotate with the resultant rigid body. For a
perfectly rigid bedy, rotating with angular velocity wi, the
velocity of any material point is the vector

a’ka'/é’t’ = &fe W X }j

For a deforming body, we can choose a value of wi, e.g. Eﬁ, which
minimizes the quantity

AP (L sy k) av)

This can be proved for the wj axes so that gi = 0, where wi is
the angular veloclty of the mean axes. Jeffreys, whose work
we already mentioned, refers the calculations to the mean axes.

2. The Principal Axes or the Axes of the Figure

These are defined in such a way as to have zero product of
inertia Ci3 1 # j. Darwin chose the principal axes for his
study of t%e pole.

The differentiation in the previous chapter is referred to
any set of perfectly rigid axes of rotation. Therefore, both
the mean and the principal axes are included in special cases.

Relations gy = 0, Gy 13 = ¢, 1 # J are the obvious choices
for mathematlcal 81mp11flcat10n, and they lead to noteworthy
simplification of Liocuville's relations. But there are dis-
advantages in these basic axes. The wind and other relative
motions rotate the mean axes slowly relative to the cbservatories,
and this must necessarily be taken into account in the correction
of the observed values. Similarly, the principal axes mowe
relative to the observatories., Therefore, Jeffreys' choice does
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not facilitate consideration of the facts of relative motion, ;so
he ignores them. Also, change 1in angular momentum of the atmos-—
phere displaces the mean axes according to the egquincctial
swelling of the Earth, and therefore we willl have smooth changes
of the tensor Cij» if the Earth is perfectly rigid.

3. The Geographical Axes

For all the above reasons, the use of the geographical axes
was found necessary; these are fixed in a prescribed manner to the
observatories. There are difficulties due to the relatlive /264
motion of the observatories. For:many problems, the relative
motion can be neglected. The I.L.S. stations have been dis-
placed close together.

If relative motion is not negligible, we choose a set of
fixed axes which we attach in some prescribed manner to the
observatories. The geophysical observations, astronomical obser-
vations, the relative motion of the observatories, and the
equations previously given, etc. are referred to these axes.

The origin.of all three systems 1s placed in the center
cf the Earth, so that

{

Ve 4 oV = o}},,

12.4, Love Numbers and Relative Coefficients

i1f the Earth were perfeetly rigid, we could apply the Liou-
vill equations 1n order to calculate changes in rotation which
arise from speclal geophysical phenomena. For a deforming
Earth, the equations are also applied, but their application is
allowed only for secondary phenomena, as, for example, the
deformation (displacement) of the Earth under the action of
small loads and the displacement of the equincctial swelling
resulting from the changes in rotation. Such displacements of
mass must be taken Into account at the same time as special dis-
placements. A comparison of the geophysical and astronomical
observations would provide us with information concerning the
elastic or inelastic properties of the Earth.

The deformations result from "massive' forces such as

tidal forces, and from surface forces, such as atmospheriec
pressure. A load suddenly applied on the surface of the Earth
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causes elastic waves traveling with a velocity on the order of /265
kilometers per second. Fundamental modes of free vibration of

the Earth related to these waves have periods an the order of

1 hour. If the period of the forced function is large compared

to this, then it can be assumed that elastic deformations take
place instantaneously, and they are given from statlec considera-
ticns. The oceans and the fluld core need greater response

time than the free vibrations, and there are certain conditions
under which statlc theory 1s applied. Consider the correspondence
of the Earth to a varlable potential U(r)s' in degree from tidal
forces due to the Moon and Sun and from centrifugal forces
resulting from rotation. These can be written as the gradients

of such a potential. The result of the deformation defines the
Love numbers as follows:

The ground rises by hUgupface/g and the portion added from
-the gravitational potentlial to the displaced surface arises
only after a new distribution, and it is KU. Therefore, . .

(1 + K) is a factor which gives the attraction of the swelling
by itself, and the substitution by hU/g takes account of this
self-attraction. A fluid surface covering the sphere will
remain of equal potential, and it will rise by (1 + K)U/g
relative to the center of the Earth and by (1 + K - h)U/g
relative to the bottom of the sea,

In additlen to the vertleal displacement of the solild
surface by hU/g, there is a horizontal displacement wlth com-
ponents

.ﬁ%’ggébg ) ?? Gé?bs?ggﬁ/bi /

where 6 = 90 - ¢ and A = eastern longitude.

The Love numbers are dimensicnless parameters with which we
speclfy some of the elastic propertles of the Eazrth. Thelr esgti-
maticn 1s the subject of elasticity. Information is taken from a
great variety of sequences. The great advantage in writing the
equations in terms of these parameters is that the equations can
be adjusted to any future improvement off our knowledge concerning
the elastic behavior of the Earth. The most defailed calculation
is the one by Takechi (1950) based on variations of density and
elastic properties of the Earth as they are derived from seismie
and other methods. Hls results:sare:

.
[AY]
(=)
LA

]

K = 290 hr = 0,587 Or = 9,068
k? = O.‘28/ b = O,GJ'O f;- = 0,082 ]
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for the two models suggested by Bullen - There are other methods
of measurlng the Love numbers, and for various reasons the
results are not immediately comparable. We will distinguish

the following cases.

1. Deformation from Reotation

Consider the distortion of the Earth due to angular potentilal
U 6f degree B8'. The distortion constitutes the source of an
external gravitational potential K(a°/r>)U, by the definition
of K. But the gravitational potential close to the mantle which
insignificantly differs from a body of spherical symmetry is
given by the formula of MacCullagh. In the present case, the.
deformation is a spherical harmonic of B! degree, and the relative
term of MacCullagh's formula can be written (Gm/r) + U where

VH.. < | z 2 z
-..—2-‘—:5 C"i (3';1‘1'3 -2xjj+-..n€GLI,12_-..J= K—%'—ES—U /

The dots imply two additional terms which are obtained by
cyclically interchanging the indices. Consider the special case
of centrifugal potentlal which is equal to 1/202 (the squarectf
the distance from the axis of rotation) or

"’/’2 / /&Jf X_r_)] w‘..a.)w, riz Y, X E\

3
This can be incorporated in the terms 1/382r2 ¥ v where
\ ’
- 2 /02 - S
= 45[6’1’(“5?’:{;‘21;2)7‘---—6&3,(02.1’;;(2_.._ ]/’

-~

is a spherical harmonic of B' degree. The term 1/3m2 2 leads
to a purely radial deformation which consists of a contraction
near the center of the Earth and an extension at the exterior
parts. By substiltutlion of the value of U in V

. ’ R : _..-..\
s (f/ = Idy + 3'9_‘ Wi "‘/constant where 7. 73 /Cf,f(‘gz+(33)/

is the inertla of the sphere in the absence of rotaticnal defor-
mation. This forms the constant, so

C’U: JJ",J,!- (ﬁd,w -U.?CuzJ}J)
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G = gravitational constant = 6.670-10-8
a = radius of the Earth cm3g-lem—2
" = distance from the center of the Earth.

2, The Secular (Eternal).Love Numbers

The Love number K can be interpreted as a measurement of
the displacement. of the Earth due to centrifugal deformation in
the corresponding sequence during the last 5 billion years. With
ne loss of generallity, we can put the x3 axls along the vector
of rotation. Then

W =0, wz=0, oy = O (mean diurnal rotation) and (, = {2z = \

= P = I 497 02 (53 = Casp 2307 52

e L o 9G

§0 K3 = 3GHC/«”Q° where H is the precessional constant. If all
the mass were concentrated at the center, C = 0 » Kg = 0. For

a homogeneous sphere, C = 2/5Ma? and with M - 5.98.7027 g for

the mass of the Earth, we obfain Kg = 1.14. The exact value

lies between these limits. From the value of H and the universal
gravitational law, we obtain:

C = 0.3336 Ha? (compare: homogeneous Earth » C = 0.4 Ma?) /268

So Kg = 0.96.
3. The Love Numbers for Fluid [Earth]

The previous calculation of K entails the cobserved value of
precession and the form of the elllpsoid derived from measure-
ment of gravity. There are no conslderations concerning the
relations force - deformation outside the Earth. Now we will
calculate the "fluid" Love numbers based on the -hypotheslis that
the Earth is in hydrostatic equilibrium, i1.e. that it has the
shape of a rotating fluid with the same density as that of the
real Earth. For a first order approximatiocn, the ellipticity of
the surface is given by

fﬂhf(%Ezjjx

If the entire mass were concentrated at the center, it
would be hy = 1 and ¢ = 1/580. For a homogeneous Earth, Kelvin
showed that hy = 5/2, so that e = 1/232. The observed ellipticity
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1/297 1lies between these values. By ﬁsing the observed value
of €, we have he = 580/297 = 1.96.

But for a fluid surface hy = 1 + K¢ » Kp = 0.96, which is
arithmetically equal to the eternal Love number Kg. A more
precise determination was given by Bullard (1948). From the
observed precession and the distribution of the density ,found
by Bullen in the Earth, Bullard obtained e-1 = 297; 338 + 0.050,
assuming hydrostatic equilibrium. The eccentricity can be
independently derived, without the assumption of hydrostatic
equilibrium, from the observations of gravity or from the motions
of the Moon. The resulting values, 296.17  0.68 and 296.72
+ 0.65 do not differ significantly from the previous value. The
more recent analysls of the observations of gravity (Helskanen,
1958) gave 297.0 to 297.2, and they are in better agreement with
the hydrostatic value. According tc these observations, the
shape of the rotating Earth 1s not different from that of the
equivalent rotating fluid. It could be a difference of the order
of about 1-3%, and in f a.c.t. observations from satellites showed
that this ocecurs. Such a difference, if it were real, would be
a2 measurement of how long nonmatieral forces are applied on the
Earth which can withstand deformation under such forces due to its
final rigidity. In the case of infinite rigidity ,» Kr # Xs.

The question whether K¢ = K5 or Kp = Kg 1s important.

4, The Love Numbers Resulting from the Tide

From studies of the Earth's tides and of the wobble described
by Chandler, h = 0.59 and K = 0.29 are obtained. The close agree-
ment with the values previously given by Takenchi obtalned from
seismic observations is exceptional. A4 difference is noticed in
the values hg = 1.96, Kg = 0.96, obtained from the shape of the
Earth. A number of hypotheses can explain this difference, and
it is not known whilch of them 1s right. One hypothesis is
based on the relative magnitude of the pressure to the eternal
Love numbers which are referred to the pressure differences, above
a limiting force, or wto:n the Love numbers due to the tide, which
are referred to the pressure differences under a limiting force.

A second hypothesis is based on the relative duration of
the pressures, and a third on the assumption that the Earth was
initlally in a melting state and that now it has the shape of
the bodies at the time of melting. Then, the agreement between
Kg and Ky entails a small change or no change in rotation. This
is very disapgreeable. But there is no doubt that the Earth cor-
responds 1in a different way to the usudl tidal potential and
the annual wobble corresponds to the diurnal rotation.
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We can consider h, K as the asymptotic cases: of the general-
ized Love numbers when the frequency i1s high and the perturbaticn
infinitesimal. Also, hg and Kg are considered the asymptotic
values for small frequency values and large amplitudes. The Love
numbers due to the effects of the tilde are taken from a total
correspondence of the planet Earth to a perturbation potential.
This is glven for the combination of the nucleus, the shell,
and the displacement of the oceans. The change in inertia due
to deformation caused by rotation is obtalned from the formula

: & . fope )
C'y:fcfr;/f -3—-21-“‘- ﬁdl a5 -3 QJ/V/‘ ){

The important terms are the products of inertia, which are
obtalined as:

1 #J, putting Kg = Ke.

5. The "Equivalent"™ Earth

Kelvin showed that for an incompressible homogeneous sphere
of stiffness u, the following is true:

hs M2 g 32 L ) \
A T rp +4 2 pgx

.

Kelvin's relatlon gives the values K¢ = 2.5, Kp = 1.5 for
the Love numbers, as compared to the observed values he = 1.96,
Ke = 0.96.for the Earth. (There are no observed values for ip.)
For a betfter adjustment to the real conditions, the simplest
way (method) is to take the relations h = he/{1+M), K = Ke/(14M),
which have the same formula as the Kelvin solution, but they
use the observed values hy = 1.96, K¢ = 0.96. The usefulness
of the model of an "equivalent" Earth depends on how well the
two known values h and K can be calculated by a sultable choice /271
of zenith parameter u.

The set of values u = 2.3, h = 0.59, K = 0.29 is in excep~
tional agreement with the best calculations of the stiffness due
to the tide. This value, w = 2.3, 1s a satisfactory measurement
of the tildal stiffness of the Earth. In conclusion, we can
roughly compute the "fluid" Love numbers %y to be 0.23 as
compared to 3/4 for a homogeneous Earth. For this value, and for
W= 2.3, we obtain:
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in agreement with Takechi's calculations.

6.  The Love Numbers of n Degree

We will have the opportunity to find the Love numbers 1n
every degree n. Their definitions are given simply by writing
Un 1n the first chapter instead of U. For a homogeneous
asymptotic sphere, the formulas are

6-‘?-:: A 72 / '&1 = L . lu = L7 S where//“ M}
4 A ’ =7 Mg ! da=1) trpn . 194

for n = 2 + N =1, and we will have the formulas of the eguivalent
Earth.

7. Fluid Earth and Plane Stress (or Tension)

Another interesting case is that of a thin elastic.erust on
a liquid Earth. Perhaps this case is well covered by consider-
ing a liquid sphere with a plane strain u which arises from the
curvature. Loglically the crust is not under strain unless it is
distorted (deformed). Consider up any potential of B' degree
due to perturbation. The deformed surface is at r = a(l+eSo)
where

45’17—_— ID%;" cos ) éoj%?), Jrlvm?j M=0 to ' &
: ) !

1s the surface harmonic and pm is the relative Legendre function /272
defined by the relation

S | _
P cos = (1" m) !/ (atw]l  5in™S 5 leosT-s) P {cose 37 ‘\
2% r-o [g,;,,;;,) ! (ﬁ_p-)‘/ /11~m-s~),/w_’ |

The potentials resulting from the superposition of the plane
strain and the deformation of the sphere are:

Vel 30 aese, wos | Zaze 5. )|
= -~ 2z, W= nGa? Ly ¥2%35
pr? 3 /P+T:§“2)If
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P = density, r = distance from the‘cénter of the Earth, G = con-
stant of gravity, a = radius of the Earth, e = ellipticity,
32 = spherical surface harmonic of degree 2.

For a homogeneous sphere 3g - 4nGap, us + vp + W, = constant
on the plane strain and the terms including Sy give

- U/Q)"‘-'/Vfﬂf’z} S/ _ 3/ IS L
4 = (e surfr~ : surf; .= %, K= 202 where™ Y= "2 pq gt
aes S, Gz L% U I+ U o Pg
ry

which 1s a dimenslonless surface tension entering in the same
way as the dimensionless stiffness u.

8. Love: Operators.and. Love Complex Numbers

In the study of polar motion and the attenuation of the
Chandler wobble, we will make use of the solutions in which the
Earth is considered as a Maxwell or Kelvin-Voigt model. For a
Maxwell, or viscoelastic (elastoplastic) model, the total value
of the deformation is written as the sum of an elastic and a
viscous term:

—> _ﬁ.E§=; L I tasiie )t (oo
S 2z 25 ae / _elas_tlc. .?;.,‘p(_ elastic )\

where u is the stiffness, ©# the dynamic viscosity and Telastie

the elastic stress. For a Kelvin-Volgt model, the total stress
is written as a sum of an elastic and a viscous stress

Celasticm 2K E# 2‘7‘-5,\, 9’_?_.1

. gt
- The Kelvin-Voigt model is characterized by the fact that there is
no constant stress assoclated with the deformation. The Kelvin- /273
Voigtl model 1s represented as a Jjump and oseillation damping in
parallel, while the Maxwell model 1s 1in series! The Lové& ¢oéf=i .
ficients can be written for any combination of jumps and oseil-
lation damping.

Once the elastic problem is solved, the appropriate solution
for the M and K-V models can be found by resubstitution of the
dimensionless p (and not u), with the coefflelents

fum Bl Aevmnlird)
f.
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where r = /3 1s the characteristic time and D the operator d/dt.

The Love operators ﬁ = Kf/(l+K), Rt = —(l—L)/(;+f) are
sultable._ For the case of simple harmonic motion el9t, the

operator D becomes io and the u, K, K' become the complex
humbers p, K, K'.

12.5. A Solution of Liouville's Approximation Equation

The Llouville equations are very greatly simplified by a
"perturbation plan." The Earth's deformatilon 1s taken into
account by varicus Love numbers.

12.5.1. Perturbations

The following method is suitable 1f the flgure poles and
the rotation are not very far from the reference pole.

Cf/ = ’4'7‘ <, (22 = A'{'CZZ C33 = '41‘ C}.} \

i
CZ = Cr2 Gs = C”S’ C_?s = Q23 | (12.1)
&y = R, Wy — Ly G)3= 9(/,:_;,,3,)/

where A, A, C are the moments of inertia with respect toc the
principal axes, Q is the mean angular velocity of the earth,
Q= 0.729.10—u rad/sid.s, Cij/c, mij and gi/0c¢ are small quantities
the squares and products of whilch can be neglected. /274

Then the Llouville equations take the followling simple form:

’}'97!_{_%2:@2

— T T e . \: ;
= -l g, , m3= Brl (12.2)

where ¢4 and op are defined from the relations
N

L -4
°r=2 — o \i ' (12.3)

22 (c-a) &) = %G+ O &y, # 29, +g,~ 42|

: . ! (12.4)
e (c-a) &y = L%cz3 - B¢, + 25, =G+ L \
. £ .
‘92CC253=="'92C33"'2?3 7‘-9/ Ly ot ‘.:
) ) e i
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The left-hand side of (12.2) i1s determined by astronomical
Observations, and the right-hand side by geophysical observations.
The dimensionless "excitation function" ¢; includes all the
possible geophysical results of the motion of the Earth. The
length of the day (l.o0.d.) [sic].

In the third part of (12.2), mj, mp, & are the direction
cosines of the axis of rotation. On the complex plane, thisi’
will be

—

Wy = eyt imy | BB AIE, g == -"-—:—"1-!— #iq = 5‘5/ (12.5)

2

12.5.2. Free Wobble

_ In the case of a free nutation of a perfectly rigid Earth,
$ = 0 and the expression (io;t) is a solution of (12.5). The
period 2m/¢; is about 10 months. The role of the deformation

of the Earth is to increase the pericd of free nutation by an
essential fraction, about 40%. This result is not at all obvious
and in fact 1t was not predicted before Chandler's discovery of
the l4-month period in the change in latitudes. The qualitative
explanation is as follows. HFor a perfectly rigid Earth, the
frequency of the free nutation is proportional to the equi-
noctlal swelling. For a deformable Earth, 1t depends only on
that part of the equinocital swelling which dces not adjust to
the Instantaneous axis of rotation.

Consider the "equation of excitation" which is due only to
rotational deformation. The products of inertia arlsing from
the rotational deformation are given by the relation

<, .
o= g m_:"( -4) z#-J:

already mentioned. In terms of perturbations noticed, these are

Cs= (c-m) £ ( C23 = (C-A) S a0y (12.6)
r‘o 7 f

When these expressions are substituted in (12.4), we obtain
for the excitation equation

(“J_-'-._—- —J-—'-! ‘ ~ ‘ -
$l =y -2 5""1,“ where W‘D-‘-f"‘/k;,j’kf,; (12.7)

s a suitable note. The Eg. (12.5) becomes
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__’-4"‘1;. 75.42}:_— /\ ‘_/'o."‘-"'; -~ 1
€z = T ¥y Xy : (12.8)

The approximation depends on o./8 = (C-A)A, 1.e. If it is
a small number. The error is 0.1%. Hence (12.7) can be inter-
breted as that part of the excitation function ¢ which is due
to the rotational deformation. Equatjions (12.7) and (12.8) can
be written according to the formula im +o,m = 0 which differs
from the corresponding equation for a perfectly rigid Earth
(with ¢ = 0), iM+o.m = 0, at this frequency of the free nutation
which was reduced from o, to

I
|
For an equivalent Earth, the wvalue is

Sa M 2

. - = %3 .__q;‘o/
Ge tep 33

The principal axzes of a body with moments of ilnertia and
inertia products A, A, C, C12, C313, Cp3, are inclined (approxi-
mately) by C13/(C-A), Cp3/(C-A) relative to the reference axis
X2. This results from %§2.6) and (12.7). 8o ¥, describes the
inelination of the principal axls of the rotationally (by rota-
tion) deforming equinoctial swelling, the "axls of deformation.™
The positions where the ¥, axls intersect the surface are the /276
poles of deformation.

The three models in the table below are instructive. In
the case of a liquld Earth, the equinoctial swelling adjusts
perfectly to the rotation, and there is no rotatlonal stability
and vibration gy = 0.0nly the part of the equinocctial swelling
which remains fixed during wobble (=70%) yields any stability.
{(a¢s 0o = corresponding frequencies, Tidal and Chandrel [sic],

ok ”‘7"74@0“}5 , _?_'z. 25 | {,’

/o / 7

f

1l2.5.3. Forced Wobble

Conslder an oscillation due to any process following a
path. We will first calculate the excitation function %(t)
as 1f the Earth were perfectly rigid. The effect of the rotational
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TABLE.

tosee | Tt ST [P A
Perfectly rigid K=0 Yp = O 6o=6¢ =4 <cycle/month
Liquid Earth k= Ly ©p = g o= O
Real Earth . =029 SZ'-p = G Formm Go= % =/ cyqle/nionth )
| . e ]

deformation 1s to produce an additional excitation:

- ' /
o = (5 /5

(12.10)

which must be taken into account during the prescribed excita-

tion.

If the initial path of the processes does not load the

Earth (e.g., winds), then_the total excitation funetion con-

sists of two parts, i.e.
loaded,

where 3, =
deformatlon loading.

b = P +‘:$D‘.

— b=F Gt

But if the Farth is not

(12.11)

K'$ is an additional excltation arising from the
The effect of deformation due to rotation

/277

is then to cause a larger excitation (and wobble) than the one

obtalned for a perfectly rigld Earth.
mation is to decrease the total excitation (K' 18 negative).

can define, for the interpretation, the deformation due to
rotation as a positlve reaction and the deformation due to loading
This is suitable for the definition of

as a negative reaction.
a "modified excitation™:

where Kgg, 1s a "transfer function," equal to
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kray= X2 |
9 ky-kj and Krqq. = (rri’) S {_K \

depending on whether or not the process loads or does not load
the Earth. Equation (12. 5) can be written in the following
equivalent form

ww e (g dieige ()] (12.13)

The two forms differ with respect to the frequency and
exeltation functions. The total excitation ¢ includes the
deformation wD due to rotation, and when it is combined with m,
then o, becomes o, and ¢ becomes v (term (12.13)).

©12.5.4. "Transfer Function®

The transfer function K for the equivalent Earth is obtained
from the definitions of K, K' where

‘fc: £ g _ !
tp YTy
V\q‘§
qlh

The values are o L.
er¥= —‘;—;t"-.q;: 493 ; zzy‘_uq_____ f ;’r

depending on whether the process is leoading the Earth or not.
In the following case, the 1ncrease from deformation due to
rotatlon cancels the decrease from deformation due to loading,
and the resulting wobble 1s the same as if the Earth were
perfectly rigid. At first sight, the result seems surprising.
But the deformation due to loading contributes only to the
products of 1nertia, and these are spherical harmonics of B!
degree and of the same type as the deformation due to rotation.

The value of the transfer function K (wobble): no load =
1.43, load = 1.00. These results are compared to the astro-
nomlcal observations by virtue of the relation

—

ry

0

{§o /4-3}—55)/ (12.14)
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However, the above values must be used carefully. These values
are based on the stiffness of the tidal effect as it 1s
obtained from the wobble. At high frequencles, the values
fail, because the correspondence of the oceans and the nucleus-
must be independent of the frequency. At very low frequencies
the nonelastlec deformation of the shell may play an important
role, and the transfer function is then a pure number.

We can take the vector sum of the effects of rotational and
loading deformations. Initiglly, the exclitation and the poles
of rotation are given at the origin of the coordinates. Hence,

$ = 0, m= 0. At time 0, the excitation pole is suddenly dis-
placed (in the direction 19° East) due to some speclal event.

In the diagram below, the Earth is assuméd to be perfectly
rigid and the rotational pole m is taken as rotating around the
exclted pole (¢ = ¢) as shown. In the central diagram, the case
of deformation due to an excitation which does not load the
" Earth is shown (¢ = 0). The new feature 1s that the equincctial

swelling adjustis %o the perturbed position of the pole of rota- /279

tion. The figure of the swelling tends to come along a line
perpendicular to the axis of rotation, but in exposing the
elastic only 1-3 successful [sic] 1is necessary:

= — am = 030 44 |

M= my + im2

m , mp = direction cosines
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The coordinates xj, Xp are given by the undisturbed pole
in the direction of Greenwich and 90° East of Greenwich. = The
disturbed excited pole y is displaced 19° East. The partilal
results of the pole of rotation m are given for a perfectly
riglid Earth above, for a deformed Earth, in the case of no
load, due to excltation (middle), and for a loaded and excilted
Earth, at the bottom. The initial speedfic excitation ¢ 1s the
same in all three. cases. The figures show the positions of
the pole of deformation ¢D: of loading wL, of total excitation ¢
and of modified excéitation .

' The total excitation.of the pole ¢ = ¥ + Pp consists of the
part ¢ which was calculated on the basis of the assumption that
‘the Earth is a perfectly rigid body, increased by the additional
~part w arising from the deformation. The pole of rotation m
rotates around the average position ¢ of the excited pole with a /280
radius magnified by a factor Ke/(Ke -~ K) = 1.43 compared to the
case of perfect rigidity, but the distinction m - ¢ between the
pole of rotation and the Instantaneous excited pole 1s the same
as 1n the case of perfect rigidity. The fact that pole § of
a modified excitation is also the average position of the instan-
taneous pole can be proved as follows. Assume that ¢ 1is at the
center of the concentric circle described by m {(of radius R) and
by ¢. 'We can write

AizPrd R, g= Yra %) R

\

where o is the unit vector. We form (K/Kge)m - ¢.and take account
of the relation .

—

- ‘ —_ ! — . = -...._I_(_._‘. |
‘/’D":j%)(f‘w:?‘ *7 %‘p © = Q)/‘zwp !).J

_ If we also use the relations of forced osclllation, we obtain
y = K¢ which is in accordance with the definition of Y.

The velocity of_wandering of the pole of rotation o is :
proportional to m - ¢ (see (12.13)), and therefore invariable with
regpect to deformation, but the periocd of a full rotation increases
from 10 to 14 months as the radius Increases respectively. The
situation 1s more complicated if the_excited pole loads the Earth
(right figure). The excitation ¢ + Y1, for deformation due to
loading is smaller by 8 than the excltation ¥ due to the initially
described surface loading. This decrease is canceled by the
increase due to rotational deformation, so that finally the

radius of the circle described by the pole of rotation i3 the same
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as for a perfectly rigid Earth. As always, the velocity of

wandering (rotation of the pole) is proportional to (m - §¢).

This is reduced by a factor of 1.4 in comparison to the C /281
peérfectly rigid Earth, and therefore the period of rotation

increases from 10 to 14 months.

12.5.6. Excitation Function

Equations (12.4) give the total excitation which includes
deformations due to loading and rotation. In all practical
problems, we are obliged to estimate the execitation ¢y as 1if
the Earth were perfectly rigid, and to take into account the
secondary deformation by means of the transfer function. 1In
this context, (12.4) can be used as written, substituting ¢4
for ¢j'

Equations (12.4) are well fitted for computing the excitation
function, whenever it changes in angular momentum of motion,.and
it 1s independent of the inertia product changes. This usually
arises whenever one or the other vanishes, for example, a power-
emltting wheel fixed on the ground and rotating with variable
value of angular velocity.gilves different values of relative
angular momentum but not of the moment of inertia. In the case
of melting ice, the angular momentum of the flowing water is
negligible, but it changes the moment of inertia.

Equations (12.4) are not suitable if we wish to separate
explicitly the results due to change in material disturbance from
those due to relative veloclty. The reason is that Ciy and g4
are both included in the relative velocity. Also they are of
the same order. Equations of a separate type were used by Munk
and Groves (1952) in calculating the annual wobble due to wind
and ocean currents. Equations (12.4) can be written:

0%(c-a) p = S dp F (watter)adv * fp f/—mqr‘fcx;/o/w ‘F (mé:me_r-ltf (12.15)
92C ¢3 = fdp Fj {ﬁi"gf{e»)&ly 76//0 FB {mo‘tion /J C{V* F3 A (momen‘j/]
L4 e A

where Ap(x3,t) is the density related to the excltation equations
o (t) and where:

matter:

2
Ft= -9, 1; , Fz=-0%xz1; , f3= —-92(1,‘21‘-2';2)J
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motion:
£ = 9(’1’15(2 + Xz Lk, /

moment : . < y
Flt = - L=z Ez/_,‘ F3=.€?/—£30{f/’

H

-

are functlons depending on the material disturbance, the
relative motion (velocity and acceleration), and the moment .
Often spherical coordinates are suitable. Consider that Kys Kgo»
Ky represent the East, South and upward components of the
velocity and

SV = 25 ddrd Id )|

the differential volume.. Then we will have

matters s - _p? d‘m? cos D cosd, Fz=-r?0%ind cosbsiny, F3= -r 02y
motion: -
Fp.=-22r cos? /2(,; cos }* ¥p cos? §in) + U J/'hi:fm}}+

+ L %) cosd §iny # 4 cosy)
Fo = 291 cos (Cuy siny+ kg cotd <ory ¢ Uy Sigdcos)y _)+ r/zi_.;icarﬂ ol )¢ UV ﬂ.}w |

The moment can be written as the sum of two terms:

— A_p: fp e/.j“ A.a’)/,(./{,\jg :l;’/p/cp,,, 4{1,” a S

The first part is due to the bedy's force fy, for example the
gravitational attraction of the equinoctial swelling. The B!

term is due to the surface tension Dgp in directlion K on a

surface element normal to ny. As a special case, we consider a
smoothed geoid, the surface of which is normal at each point to - /283
the vector of gravity passing through the point under considera-

tion. The radial components of the surface tension do not yileld

a moment. The nonradial components are:
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where pmm is the stress component
along the normal on the geoid. (The
summatlon convention does not apply
here ) Hence:

4 Z‘Q'/[—}bah‘ R -, COH?CO:H-,D;-T,-,,, -gnfmgauydmgjdf

J
) £z = XS Porug €019 = py,, cosPsin g T j X sind cosV cosd Jds

ZS = CX/ /p‘am Jf}flﬂ] Q”a’ P

A graphic summary of the effect of the various events on the
excited pole is given In the figure below. It is understood
that a local left-handed rotation has a similar result to a
local failure of mass. Both cyclones are in the Northern
hemisphere.

ag Cff -\ 1, 2, 3, 4 = toward North,
de < East, South, West motion.
ji 1, 2, .3, 4 = toward East,
South, West, North stress.
Pt

Disturbances in the moment are
[+]
2 2 ; l4<> - due to a mass, and at 180° this
g

result has a positive value of
Inerease dm/dt at 270° East. The

/ effect of the relative angular

/  momentum g on a horizontal vortex
ib / and the time change dg/dt are shown.

A ‘4/ ©12.6.  Eternal Polar Motion
We have already mentioned that

eternal polar motion of the pole
censlists of a progressive component

240

/284



and a periodic equilibrium (wobble). It is proved that the peri-
odic wobble takes place with a period of 24 years.

The total deformation excitation y due to the displacement
of the Farth will be proportional to Kd where K is the Love
number and d the distance of the pole of rotation from the axis
of the figure. Furthermore, .if change in T, the free nutational
period, is caused only by the displacement of the Earth,will
be a simple function of K. Nevertheless, 1 changes with d,
and therefore y may include a function of d2. The value of d
1s given by the free nutational term my, of the form (ioyt)
plus the forced nutational terms m, of the form (isct) and n,
of the form (-1ict). Then 1t can be shown that this leads to
mean excltations varylng as cos(o, # c)t/2 and that these are
caused by an excitation which changes as cos(oc - og)t/4. The
frequencies (¢ - 0g)/2 and (o - o.)/% correspond to the observed
wobble pericds of about 12 and 24 years.

The computed meridian of the'Wwobble is in satisfactory

agreement with the observed meridian A;. The angle:.béetween ir and
L L

Ap, the meridian of the "progressive' motion, is glven by A =

= cost=1((K/Kp)costs) where Kr is the value of K for hydrostatic
equilibrium and 6 is the angle between Ap and the principal

axis of epochic excitatlon. The amplitudes of the wobble and
the apparent fluctuations in progressive motion change with oo
in an expected way. When the natural frequency o, comes close
to the forced frequency o, the excitations and amplitudes
increase, and the mean pole advances toward the direction of

the progressive motion.

Changes 1in the length of the day T show as a result a value
of K apparently changing with 4. The observed value of T and
the amplitude of polar motion from 1955 show similarly a 6 year
change proportional to Jcos(oc - o,)t/2].

The value of K and that of t depend inversely on the mean
excitation. When wobble excitation increases, the values of 1
decrease in a different way. Moreover, X increases more when
K increases less. The 6-year excitation whiech is a conseguence
of the free and forced wobble, shows a similar result. When the
consequences are greater, the excitations caused are smaller
and the values of 1 are smaller.

Exactly these relations show that in periocdiec excitations,

nutations are connected with the wobbles and with the change in
the length of the day.

12.7. Small Period Changes

The small period changes and the totally irregular changes'
have not been investigated. These changes are caused, on the
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One hand, by epochic periodic phenomena, .or on the other hand,
by phenomena which take place suddenly. Such phenomena are
wind, ocean currents, earthquakes, and especially tectonic
phenomena, sudden volcanic explosions, aceidental meteorite
falls, etec. It was found that if all the cars in America

were driven from Alaska to Mex1co, the moment of 1nertia of

the Earth would change by 1/104 That 1s, there are known

and unknown phencmena causing changes. A common feature of
them is that the change in polar position which they cause is
very small. Attempts have been made to Ilnvestigate all these
bPhenomena, and mathematical formulations have been found for
some of them, and thelr investigation is proceeding rapidly.
Obviocusly, after all of them have been investigated, we will
be able to attribute to each of them the corresponding amount
of total change in polar position. In any case, the considera-
tion of all phenomena seems difficult enough.

With this, the above investigation closes, and it is
considered that it touched the main problems, theories and
methods, unravelling the knot of the major part of
knowledge about polar motion to future works.
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